Supporting Information

(Submitted to the RSC Advances)

Role of Exchange and Correlation in the Real External Prediction of Mutagenicity: Performance of Hybrid and Meta-hybrid Exchange-correlation Functionals

Reenu and Vikas*

Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigrah-160014, India

*Corresponding Author Email: qlabspu@pu.ac.in, qlabspu@yahoo.com Phone: +91-172-2534408

Table of Contents

Supporting in	formation Figures S1-S3
Figure S1.	Comparison of the mean absolute error (MAE) and the root mean square error (RMSE) in the external (EXT) predictivity of various
	models, for the TA98 mutagenicity of nitrated-PAHs, based on the total energy (E), energy of the HOMO and the LUMO,
	absolute electronegativity (χ), chemical hardness (η) and electrophilicity index (ω) computed through exchange-only methods
	(HFX, B88), exchange-correlation (XC) methods (HFX+LYP, BLYP, B3LYP, M06, M06-L, M06-2X), and also based on the
	descriptors incorporating mainly the effect of electron correlation (CORR) from the respective XC methods.
Figure S2(A).	Williams plots of the Standardized residuals vs Leverage (h) for TA100 mutagenicity for best models obtained with Exchange (X) only,
	Exchange + Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random initiating. Training and prediction set chemicals are represented with onen (vellow) and filled (hlue) simples, respectively. The energies have a set of the electron correlation (CORR) of the energies based descriptors with 30% random
	represent ID number of the compounds (refer to Supporting Information Table S1). The vertical (solid) line indicates warning leverage h*
	whereas the horizontal (dashed) line specifies standardized residual value of 3.0.
Figure S2(B).	Williams plots of the Standardized residuals vs Leverage (h) for TA98 mutagenicity for best models developed with Exchange (X) only,
	Exchange + Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random
	splitting. Training and prediction set chemicals are represented with open (yellow) and filled (blue) circles, respectively. The encircled values
	represent ID number of the compounds (refer to Supporting Information Table S1). The vertical (solid) line indicates warning leverage h*,
Figure S2(A)	whereas the horizontal (dashed) line specifies standardized residual value of 3.0.
Figure 55(A).	Scaller piols of the Experimental vs Predicted TA100 Mutagenicity for the best models developed with Exchange (X) only, Exchange + Correlation ($X+C$) methods and effect of the electron correlation (CORR) of the energies based descriptors with 30% random splitting
	Training and prediction set chemicals are represented with open (vellow) and filled (blue) circles, respectively.
Figure S3(B).	Scatter plots of the Experimental vs Predicted TA100 Mutagenicity for best models developed with Exchange (X) only, Exchange +
C ()	Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random splitting.
	Training and prediction set chemicals are represented with open (yellow) and filled (blue) circles, respectively.
Supporting in	formation Tables S1 – S30
Table S1.	List of nitrated-PAHs with their mutagenicity expressed as Log TA100 and Log TA98.
Table S2a.	Computed value of total energy (E) descriptor, (all in a.u., 1a.u.=27.21165eV, 627.50956 kcal/mol) calculated with HFX, B88, HF, HFX+LYP,
	BLYP, B3LYP, M06, M06-L, and M06-2X level of the theory employing 6-311G(d,p) basis set for 51-nitrated PAHs.
Table S2b.	Same as Table S2a but for HOMO energy descriptor (E_{HOMO}).
Table S2c.	Same as Table S2a but for LUMO energy descriptor (E_{LUMO}).
Table S2d.	Same as Table S2a but for absolute electronegativity descriptor (χ).
Table S2e.	Same as Table S2a but for chemical hardness descriptor (η) .

Table S2f.	Same as Table S2a but for electrophilicity index descriptor (ω).
Table S3.	Compounds in the training set (T), prediction set (P) and excluded set (E) in different types of splitting methods employed for TA100 mutagenicity. Excluded compounds are either response or structural outliers (determined from Williams plot).
Table S4.	Compounds in the training set (T), prediction set (P) and excluded set (E) in different types of splitting methods employed for TA98 mutagenicity. Excluded compounds are either response or structural outliers (determined from Williams plot).
Table S5.	Comparison of the key internal and external validation parameters for the models based on the total energy (<i>E</i>) and energy of HOMO (E_{HOMO}) computed with the Exchange (X) only, Exchange + Correlation (X+C) methods, and with the effect of electron-correlation (CORR) of the descriptors, for modeling TA98 mutagenicity of nitrated-PAHs.
Table S6.	Same as Table S5 but for the models based on the total electronic energy (E) and energy of the LUMO (E_{LUMO}).
Table S7.	Same as Table S5 but for the models based on the total electronic energy (<i>E</i>) and absolute electronegativity (χ).
Table S8.	Same as Table S5 but for the models based on the total energy (E) and chemical hardness (η).
Table S9.	Same as Table S5 but for the models based on the total electronic energy (<i>E</i>) and electrophilicity index (ω).
Table S10.	Comparison of the key internal and external validation parameters for the models developed with the total energy (<i>E</i>), energy of HOMO (E_{HOMO}), energy of LUMO (E_{LUMO}), absolute electronegativity (χ), chemical hardness (η) and electrophilicity index (ω) computed with the
T 11 011	Exchange (X) only Hartree-Fock (HF) method, for modeling TA100 mutagenicity and TA98 mutagenicity of nitrated-PAHs.
Table S11.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange (X) only (B88, HFX and HF) based methods through activity sampling (ordered response) splitting method.
Table S12.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange (X) only (B88, HFX and HF) based methods through 30% (random) splitting method.
Table S13.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange (X) only (B88, HFX and HF) based methods through activity sampling (ordered response) splitting method.
Table S14.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange (X) only (B88, HFX and HF) based methods through 30% (random) splitting method.
Table S15.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange-correlation (HFX+LYP, BLYP and B3LYP) based methods through activity sampling (ordered response) splitting method.
Table S16.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange-correlation (HFX+LYP, BLYP and B3LYP) based methods through 30% (random) splitting method.
Table S17.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using meta exchange-correlation functionals (M06, M06-L and M06-2X) based methods through activity sampling (ordered response) splitting method.
Table S18.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using meta exchange-correlation functionals (M06, M06-L and M06-2X) based methods through 30% (random) splitting method.

Table S19.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange-
	correlation (HFX+LYP, BLYP and B3LYP) based methods through activity sampling (ordered response) splitting method.
Table S20.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange-
	correlation (HFX+LYP, BLYP and B3LYP) based methods through 30% (random) splitting method.
Table S21.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using meta
	exchange-correlation functionals (M06, M06-L and M06-2X) based methods through activity sampling (ordered response) splitting method.
Table S22.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using meta
	exchange-correlation functionals (M06, M06-L and M06-2X) based methods through 30% (random) splitting method.
Table S23.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-
	correlation (CORR(HFX+LYP), CORR(BLYP), CORR(B3LYP)) based methods through activity sampling (ordered response) splitting
	method.
Table S24.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-
	correlation (CORR(HFX+LYP), CORR(BLYP), CORR(B3LYP)) based methods through 30% (random) splitting method.
Table S25.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-
	correlation (CORR(HFX+LYP), CORR(BLYP), CORR(B3LYP)) based methods through activity sampling (ordered response) splitting
	method.
Table S26.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-
	correlation (CORR(HFX+LYP), CORR(BLYP), CORR(B3LYP)) based methods through 30% (random) splitting method.
Table S27.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-
	correlation (CORR(M06), CORR(M06-L), CORR(M06-2X)) based methods through activity sampling (ordered response) splitting method.
Table S28.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-
	correlation (CORR(M06) CORR(M06-L), CORR(M06-2X)) based methods through 30% (random) splitting method.
Table S29.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-
	correlation (CORR(M06), CORR(M06-L), CORR(M06-2X)) based methods through activity sampling (ordered response) splitting method.
Table S30.	Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-
	correlation (CORR(M06), CORR(M06-L), CORR(M06-2X)) based methods through activity sampling 30% (random) splitting method.

QSAR models for TA98 mutagenicity

Figure S1. Comparison of the mean absolute error (*MAE*) and the root mean square error (*RMSE*) in the external (EXT) predictivity of various models, for the TA98 mutagenicity of nitrated-PAHs, based on the total energy (*E*), energy of the HOMO and the LUMO, absolute electronegativity (χ), chemical hardness (η) and electrophilicity index (ω) computed through exchange-only methods (HFX, B88), exchange-correlation (XC) methods (HFX+LYP, BLYP, B3LYP, M06, M06-L, M06-2X), and also based on the descriptors incorporating mainly the effect of electron correlation (CORR) from the respective XC methods.

Figure S2(A). Williams plots of the Standardized residuals vs Leverage (h) for TA100 mutagenicity for best models obtained with Exchange (X) only, Exchange + Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random splitting. Training and prediction set chemicals are represented with open (yellow) and filled (blue) circles, respectively. The encircled values represent ID number of the compounds (refer to Supporting Information Table S1). The vertical (solid) line indicates warning leverage h^* , whereas the horizontal (dashed) line specifies standardized residual value of 3.0.

Figure S2(A) continued...

Figure S2(B). Williams plots of the Standardized residuals vs Leverage (h) for TA98 mutagenicity for best models developed with Exchange (X) only, Exchange + Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random splitting. Training and prediction set chemicals are represented with open (yellow) and filled (blue) circles, respectively. The encircled values represent ID number of the compounds (refer to Supporting Information Table S1). The vertical (solid) line indicates warning leverage h^* , whereas the horizontal (dashed) line specifies standardized residual value of 3.0.

Figure S2(B) continued...

Figure S3. (A) Scatter plots of the Experimental vs Predicted TA100 Mutagenicity for the best models developed with Exchange (X) only, Exchange + Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random splitting. Training and prediction set chemicals are represented with open (yellow) and filled (blue) circles, respectively.

Figure S3(A) continued...

Figure S3(B). Scatter plots of the Experimental vs Predicted TA100 Mutagenicity for best models developed with Exchange (X) only, Exchange + Correlation (X+C) methods, and effect of the electron-correlation (CORR) of the energies based descriptors with 30% random splitting. Training and prediction set chemicals are represented with open (yellow) and filled (blue) circles, respectively.

Figure S3(B) continued...

Figure S3(B) continued...

Figure S3(B) continued...

Table S1. List of nitrated-PAHs with their mutagenicity expressed as Log TA100 and Log TA98.

-

	Chemical ID	Activity (I on	<u>a as 205 111100 und 205 11190.</u>	Chemical ID	Activity
Name of Compound	number	TA100)	Name of Compound	number	(Log TA98)
4-nitrotoulene	1	-2.10	1-methyl-2-nitronaphthalene	1	-0.70
2,6-dinitrotoulene	2	-1.34	1-nitronaphthlene	2	-0.61
3,4-dinitrotoulene	3	-1.30	2-nitronaphthlene	3	-0.30
2,4-dinitrotoulene	4	-1.29	1,3-dinitronaphthlene	4	-0.05
2,3-dinitrotoulene	5	-1.26	1,3-dinitrobenzene	5	0.03
6-nitroquinoline	6	-1.05	1,5-dinitronaphthlene	6	0.52
3-nitrocarbazole	7	-1.00	1,8-dinitronaphthlene	7	0.90
3,5-dinitrotoulene	8	-0.72	2-nitrofluorene	8	1.43
3-methyl-2-nitronaphthalene	9	-0.70	2-nitrophenanthrene	9	2.11
2.5-dinitrotoulene	10	-0.70		10	2.74
1 3 6 8-tetranitronanhthalene	12	-0.52	2-nitroanthracene	12	2.70
1.3-dinitrobenzene	13	-0.51	2-nitropyrene	13	3.35
2-nitrocarbazole	14	-0.30	1.3.6.8-tetranitropyrene	14	4.99
4-nitrocarbazole	15	-0.30	1,3,6-trinitropyrene	15	4.99
2,3,4-trinitrotoulene	16	0.08	1,3-dinitropyrene	16	5.04
1-methyl-2-nitronaphthalene	17	0.08	1,6-dinitropyrene	17	5.06
2,4,6-trinitrotoulene	18	0.16	1,8-dinitropyrene	18	5.39
9-nitroanthracene	19	0.26			
1-nitronaphthlene	20	0.28			
2-nitronaphthlene	21	0.37			
2,3,5-trinitrotoulene	22	0.46			
2,3,6-trinitrotoulene	23	0.55			
6-nitrobenzo[a]pyrene	24	0.71			
1,3,5-trinitrobenzene	25	0.72			
1,3-dinitronaphthlene	26	0.86			
1,5-dinitronaphthlene	27	0.91			
5-nitroacenaphthene	28	0.97			
3,4,5-trinitrotoulene	29	1.01			
2-nitrofluorene	30	1.08			
1,8-dinitronaphthlene	31	1.12			
2,4,5-trinitrotoulene	32	1.12			
2,7-dinitrofluorene	33	1.27			
1-nitrobenzo[e]pyrene	34	1.65			
2-nitrophenanthrene	35	1.79			
7-nitrofluoranthene	36	2.09			
1-nitropyrene	37	2.17			
6-nitrochrysene	38	2.21			
2,4,7-trinitro-9-fluorenone	39	2.27			
2,4,5,7-tetranitro-9-fluorenone	40	2.46			
8-nitrofluoranthene	41	2.60			
2,7-dinitro-9-fluorenone	42	2.69			
2-nitropyrene	43	2.87			
1-nitrofluoranthene	44	3.00			
2-nitroanthracene	45	3.05			
1,3,6,8-tetranitropyrene	46	3.18			
3-nitrofluoranthene	47	3.31			
1,3,6-trinitropyrene	48	3.87			
1,6-dinitropyrene	49	4.09			
1,3-dinitropyrene	50	4.63			
1,8-dinitropyrene	51	4.74			

Table S2a. Computed value of total energy (E) descriptor, (all in a.u., 1a.u.=27.21165eV, 627.50956 kcal/mol) through exchange-only methods (HFX, B88, HF), exchange-correlation (XC) methods (HFX+LYP, BLYP, B3LYP, M06, M06-L, M06-2X), employing 6-311G(d,p) basis set, along with the descriptors incorporating mainly the effect of electron correlation (CORR) from the respective XC methods for 51-nitrated PAHs. Name of Compound -Fuest -Fuest<															
Name of Compound	- <i>E</i> HFX	- <i>E</i> _{B88}	- <i>Е</i> нғ	-E _{HFX+LYP}	- <i>E</i> _{BLYP}	- <i>E</i> _{B3LYP}	- <i>E</i> _{M06}	- <i>E</i> _{M06-L}	- <i>E</i> _{M06-2X}	-E _{CORR(HEX+LYP)}	-E _{CORR(BLYP)}	-E _{CORR(B3LYP)}	- <i>E</i> _{CORR(M06)}	- <i>E</i> _{CORR(M06-L)}	- <i>E</i> _{CORR(M06-2X)}
4-nitrotoulene	473.324	473.585	473.324	475.809	476.057	476.194	475.869	476.137	475.988	2.485	2.472	2.869	2.545	2.813	2.663
2 6-dinitrotoulene	676.827	677.298	676 828	680,148	680,599	680 733	680.318	680.668	680.458	3.321	3,301	3,905	3.490	3.841	3.631
3 4-dinitrotoulene	676.822	677,197	676 657	680,140	680,595	680 608	680,184	680.545	680.317	3,318	3,398	3,951	3.527	3.888	3.660
2 1-dinitrotoulene	676.837	677 306	676.837	680 157	680,606	680 7/1	680 325	680 675	680.464	3 320	3 300	3 904	3 488	3 838	3 627
2.2 dinitrotoulono	676.830	677 102	676 654	680 120	680.401	690.605	680 183	680 544	680.316	2 210	3.500	2 051	2 5 2 0	3.850	3.627
	602,954	603,299	602 954	606.092	606.421	606 591	606.171	606.513	606.335	3,138	3.233	3.637	3.223	3.559	3.380
3-nitrocarbazole	717 765	718 134	717 765	721 591	721 941	722 154	721 655	722 074	721 864	3 826	3 807	4 389	3 890	4 308	4 099
3.5-dinitrotoulene	676.840	677.310	676.840	680.159	680.610	680.744	680.327	680.677	680.466	3.319	3.299	3.904	3.487	3.837	3.626
3-methyl-2-nitronaphthalene	625,999	626,306	625 999	629.376	629,666	629 865	629,422	629,793	629,600	3,378	3,360	3,866	3.424	3,794	3,602
5-nitroquinoline	602.947	603.293	602.947	606.086	606.416	606.576	606.166	606.509	606.330	3.139	3.123	3.629	3.219	3.561	3.383
2 5-dinitrotoulene	676.835	677.305	676 835	680,155	680.606	680 740	680.324	680.674	680,464	3.320	3.300	3.905	3.489	3.839	3.629
1 3 6 8-tetranitronanhthalene	1197,477	1198.417	1197 477	1203.098	1204.003	1204 169	1203.483	1204.073	1203,709	5.621	5.586	6.692	6.006	6.596	6,232
1 3-dipitrobenzene	637 793	638 266	637 793	640.853	6/1 307	6/1 /15	6/1 031	6/1 35/	6/1 158	3 059	3 0/1	3 622	3 238	3 560	3 365
2-nitrocarbazole	717 763	718 133	717 763	721 589	721 940	722 153	721 654	722 072	721 863	3 826	3 807	4 390	3 891	4 310	4 100
4-nitrocarbazole	717.755	718.125	717 756	721.583	721.934	722.133	721.648	722.067	721.858	3.828	3.809	4.391	3.893	4.311	4.102
2.3.4-trinitrotoulene	880.317	881.005	880.291	884.470	885.132	885.262	884.756	885.190	884.915	4.154	4.127	4.971	4.465	4.899	4.623
1-methyl-2-nitronaphthalene	625.994	626.301	625.994	629.373	629.663	629.861	629.420	629.790	629.598	3.378	3.361	3.867	3.425	3.796	3.604
2.4.6-trinitrotoulene	880.339	881.020	880.339	884.494	885.148	885.279	884.772	885.205	884.932	4.155	4.128	4.940	4.433	4.865	4.593
9-nitroanthracene	739.615	739.977	739.615	743.624	743.967	744.200	743.671	744.117	743.895	4.009	3.990	4.585	4.056	4.501	4.280
1-nitronaphthlene	586.949	587.261	586.949	590.067	590.363	590,535	590.125	590.467	590.290	3.118	3.102	3.586	3.176	3.518	3.341
2-nitronaphthlene	586,957	587,268	586 957	590.074	590,370	590 542	590,131	590.474	590,296	3,117	3,102	3.584	3,173	3,516	3,339
2 3 5-trinitrotoulene	880.167	880.918	880 167	884.329	885.144	884 876	884.641	885.085	884.794	4.162	4.226	4.709	4.474	4.918	4.627
2 3 6-trinitrotoulene	880.323	880.910	880.324	884.478	885.137	885 149	884.635	885.079	884.789	4.155	4.227	4.825	4.311	4.755	4.465
6-nitrobenzo[a]pvrene	968.071	968.502	968.071	973.400	973.806	974.128	973.426	974.024	973.740	5.329	5.305	6.057	5.355	5.953	5.670
1.3.5-trinitrobenzene	841.304	841.986	841.304	845.197	845.855	845.961	845.484	845.889	845.630	3.893	3.869	4.657	4.181	4.585	4.327
1,3-dinitronaphthlene	790.467	790.987	790.467	794.419	794.917	795.087	794.584	795.008	794.769	3.952	3.930	4.620	4.117	4.542	4.302
1,5-dinitronaphthlene	790.460	790.981	790.460	794.413	794.912	795.081	794.579	795.003	794.765	3.953	3.931	4.621	4.119	4.543	4.305
5-nitroacenaphthene	663.873	664.187	663.873	667.468	667.763	667.977	667.509	667.902	667.702	3.595	3.577	4.104	3.636	4.029	3.829
3.4.5-trinitrotoulene	880.319	881.039	880.102	884.472	885.134	885.281	884.756	885.190	884.913	4.153	4.095	5.179	4.655	5.089	4.812
2-nitrofluorene	701.758	702.091	701.758	705.558	705.873	706.098	705.598	706.017	705.808	3.801	3.782	4.340	3.840	4.260	4.050
1,8-dinitronaphthlene	790.452	790.972	790.452	794.405	794.903	795.073	794.573	794.998	794.760	3.954	3.931	4.621	4.121	4.547	4.308
2,4,5-trinitrotoulene	880.163	880.916	880.163	884.324	885.140	885.152	884.637	885.082	884.790	4.161	4.225	4.990	4.474	4.919	4.627
2,7-dinitrofluorene	905.179	905.820	905.279	909.914	910.430	910.653	910.060	910.562	910.290	4.735	4.610	5.374	4.782	5.283	5.011
1-nitrobenzo[e]pyrene	968.070	968.499	968.070	973.400	973.804	974.127	973.426	974.023	973.742	5.330	5.305	6.057	5.356	5.953	5.672
2-nitrophenanthrene	739.640	739.995	739.640	743.650	743.985	744.220	743.691	744.136	743.915	4.010	3.990	4.580	4.051	4.496	4.275
7-nitrofluoranthene	815.381	815.767	815.381	819.815	820.180	820.695	819.855	820.350	820.110	4.435	4.413	5.315	4.475	4.970	4.730
1-nitropyrene	815.402	815.786	815.402	819.838	820.202	820.461	819.877	820.372	820.132	4.437	4.416	5.060	4.475	4.971	4.730
6-nitrochrysene	892.311	892.711	892.311	897.214	897.592	897.889	897.241	897.789	897.525	4.904	4.880	5.578	4.930	5.478	5.214
2,4,7-trinitro-9-fluorenone	1182.494	1183.329	1182.494	1188.212	1189.014	1189.221	1188.512	1189.116	1188.766	5.718	5.685	6.727	6.018	6.622	6.272
2,4,5,7-tetranitro-9-fluorenone	1385.991	1387.036	1385.991	1392.545	1393.551	1393.755	1392.957	1393.644	1393.233	6.554	6.514	7.764	6.966	7.653	7.242
8-nitrofluoranthene	854.433	854.812	854.433	859.126	859.483	859.770	859.152	859.673	859.420	4.694	4.671	5.337	4.719	5.241	4.988
2,7-dinitro-9-fluorenone	978.989	979.613	978.989	983.871	984.470	984.680	984.062	984.584	984.296	4.882	4.857	5.690	5.073	5.595	5.307
2-nitropyrene	815.401	815.785	815.409	819.837	820.201	820.460	819.876	820.371	820.131	4.437	4.416	5.051	4.467	4.962	4.722
1-nitrofluoranthene	815.381	815.767	815.381	819.815	820.180	820.439	819.855	820.350	820.110	4.435	4.413	5.058	4.474	4.969	4.729
2-nitroanthracene	739.630	739.990	739.630	743.638	743.979	744.212	743.682	744.127	743.905	4.008	3.989	4.583	4.052	4.498	4.275
1,3,6,8-tetranitropyrene	1425.925	1426.940	1425.925	1432.867	1433.842	1434.094	1433.233	1433.975	1433.548	6.942	6.901	8.169	7.308	8.050	7.623
3-nitrofluoranthene	815.382	815.768	815.382	819.816	820.181	820.441	819.856	820.351	820.110	4.434	4.413	5.058	4.473	4.969	4.728
1,3,6-trinitropyrene	1222.421	1223.225	1222.421	1228.528	1229.298	1229.553	1228.784	1229.443	1229.079	6.107	6.073	7.132	6.363	7.023	6.658
1,6-dinitropyrene	1018.913	1019.506	1018.913	1024.185	1024.750	1025.008	1024.331	1024.908	1024.607	5.272	5.245	6.095	5.418	5.995	5.694
1,3-dinitropyrene	1018.912	1019.506	1018.912	1024.184	1024.751	1025.008	1024.331	1024.908	1024.606	5.272	5.245	6.096	5.419	5.997	5.694
1,8-dinitropyrene	1018.914	1019.507	1018.913	1024.185	1024.752	1025.009	1024.331	1024.910	1024.608	5.272	5.245	6.096	5.418	5.997	5.695

Table S2b. Same as Table S2a but for HOMO energy descriptor (E_{HOMO}).															
Name of Compound	$-E_{\rm HFex}^{\rm HOMO}$	$-E_{\rm B88}^{\rm HOMO}$	$-E_{\rm HF}^{\rm HOMO}$	$-E_{\rm HFex+LYP}^{\rm HOMO}$	$-E_{\rm BLYP}^{\rm HOMO}$	$-E_{\rm B3LYP}^{\rm HOMO}$	$-E_{M06}^{HOMO}$	$-E_{M06-L}^{HOMO}$	$-E_{M06-2X}^{HOMO}$	$-E_{\text{CORR}(\text{HFex+LYP})}^{\text{HOMO}}$	-E ^{HOMO} CORR(BLYP)	E ^{HOMO} CORR(B3LYP)	E ^{HOMO} CORR(M06)	E ^{HOMO} CORR(M06-L)	E ^{HOMO} CORR(M06-2X)
4-nitrotoulene	0.363	0.199	0.363	0.397	0.233	0.278	0.289	0.252	0.329	0.034	0.034	0.085	0.074	0.112	0.035
2,6-dinitrotoulene	0.389	0.210	0.389	0.424	0.244	0.297	0.310	0.262	0.353	0.035	0.034	0.092	0.079	0.127	0.036
3,4-dinitrotoulene	0.389	0.155	0.303	0.423	0.240	0.215	0.226	0.191	0.259	0.034	0.085	0.088	0.077	0.112	0.044
2,4-dinitrotoulene	0.393	0.215	0.393	0.428	0.250	0.304	0.315	0.268	0.356	0.035	0.035	0.089	0.078	0.125	0.037
2,3-dinitrotoulene	0.386	0.155	0.303	0.420	0.184	0.215	0.226	0.191	0.259	0.034	0.029	0.088	0.077	0.112	0.044
6-nitroquinoline	0.343	0.199	0.343	0.377	0.229	0.267	0.278	0.246	0.315	0.034	0.030	0.076	0.065	0.097	0.028
3-nitrocarbazole	0.308	0.168	0.308	0.341	0.200	0.233	0.246	0.213	0.279	0.033	0.032	0.075	0.062	0.095	0.029
3,5-dinitrotoulene	0.387	0.218	0.387	0.422	0.253	0.301	0.312	0.272	0.353	0.035	0.035	0.086	0.075	0.115	0.034
3-methyl-2-nitronaphthalene	0.313	0.176	0.313	0.346	0.208	0.241	0.252	0.221	0.288	0.033	0.032	0.072	0.061	0.092	0.025
5-nitroquinoline	0.345	0.195	0.345	0.379	0.226	0.266	0.278	0.243	0.315	0.034	0.031	0.079	0.067	0.102	0.030
2,5-dinitrotoulene	0.385	0.216	0.386	0.420	0.251	0.301	0.311	0.269	0.353	0.035	0.035	0.085	0.075	0.117	0.033
1,3,6,8-tetranitronaphthalene	0.397	0.226	0.397	0.431	0.262	0.306	0.318	0.279	0.359	0.034	0.036	0.091	0.079	0.118	0.038
1,3-dinitrobenzene	0.404	0.221	0.404	0.440	0.256	0.316	0.328	0.275	0.370	0.036	0.035	0.088	0.076	0.129	0.034
2-nitrocarbazole	0.306	0.165	0.305	0.338	0.197	0.231	0.243	0.211	0.277	0.032	0.032	0.074	0.062	0.094	0.028
4-nitrocarbazole	0.300	0.161	0.301	0.333	0.192	0.226	0.238	0.206	0.272	0.033	0.031	0.075	0.063	0.095	0.029
2,3,4-trinitrotoulene	0.416	0.222	0.396	0.451	0.255	0.309	0.322	0.274	0.371	0.035	0.033	0.087	0.074	0.122	0.025
1-methyl-2-nitronaphthalene	0.314	0.176	0.314	0.347	0.208	0.241	0.252	0.221	0.289	0.033	0.032	0.073	0.062	0.093	0.025
2,4,6-trinitrotoulene	0.424	0.227	0.424	0.460	0.262	0.317	0.331	0.280	0.381	0.036	0.035	0.107	0.093	0.144	0.043
9-nitroanthracene	0.287	0.158	0.287	0.319	0.190	0.221	0.232	0.202	0.266	0.032	0.032	0.066	0.055	0.085	0.021
1-nitronaphthlene	0.319	0.179	0.319	0.352	0.212	0.246	0.257	0.226	0.293	0.033	0.033	0.073	0.062	0.093	0.612
2-nitronaphthlene	0.319	0.182	0.319	0.352	0.214	0.247	0.258	0.228	0.295	0.033	0.032	0.072	0.061	0.091	0.024
2,3,5-trinitrotoulene	0.324	0.177	0.324	0.356	0.263	0.250	0.249	0.215	0.281	0.032	0.086	0.074	0.075	0.109	0.043
2,3,6-trinitrotoulene	0.413	0.175	0.414	0.448	0.259	0.237	0.248	0.214	0.282	0.035	0.084	0.177	0.166	0.200	0.132
6-nitrobenzo[a]pyrene	0.275	0.152	0.275	0.307	0.185	0.214	0.224	0.196	0.257	0.032	0.033	0.061	0.051	0.079	0.018
1,3,5-trinitrobenzene	0.442	0.237	0.442	0.478	0.272	0.336	0.352	0.292	0.399	0.036	0.035	0.106	0.090	0.150	0.043
1,3-dinitronaphthlene	0.344	0.200	0.344	0.378	0.233	0.268	0.279	0.247	0.316	0.034	0.033	0.076	0.065	0.097	0.028
1,5-dinitronaphthlene	0.347	0.197	0.347	0.381	0.232	0.268	0.280	0.246	0.317	0.034	0.035	0.079	0.067	0.101	0.030
5-nitroacenaphthene	0.305	0.170	0.305	0.337	0.202	0.234	0.244	0.213	0.279	0.032	0.032	0.071	0.061	0.092	0.026
3,4,5-trinitrotoulene	0.412	0.192	0.346	0.446	0.254	0.270	0.317	0.272	0.365	0.034	0.062	0.076	0.029	0.074	-0.019
2-nitrofluorene	0.314	0.180	0.314	0.348	0.212	0.245	0.255	0.225	0.291	0.034	0.032	0.069	0.059	0.089	0.023
1,8-dinitronaphthlene	0.347	0.193	0.347	0.381	0.227	0.266	0.277	0.243	0.316	0.034	0.034	0.081	0.070	0.104	0.031
2,4,5-trinitrotoulene	0.322	0.174	0.322	0.354	0.259	0.236	0.246	0.213	0.279	0.032	0.085	0.086	0.076	0.109	0.043
2,7-dinitrofluorene	0.343	0.201	0.343	0.377	0.234	0.268	0.279	0.247	0.315	0.034	0.033	0.075	0.064	0.096	0.028
1-nitrobenzo[e]pyrene	0.286	0.161	0.286	0.319	0.193	0.224	0.234	0.206	0.268	0.033	0.032	0.062	0.052	0.080	0.018
2-nitrophenanthrene	0.308	0.176	0.308	0.341	0.208	0.240	0.251	0.221	0.286	0.033	0.032	0.068	0.057	0.087	0.022
7-nitrofluoranthene	0.303	0.173	0.303	0.336	0.205	0.237	0.247	0.218	0.282	0.033	0.032	0.066	0.056	0.085	0.021
1-nitropyrene	0.287	0.164	0.287	0.320	0.196	0.226	0.236	0.208	0.268	0.033	0.032	0.061	0.051	0.079	0.019
6-nitrochrysene	0.297	0.167	0.297	0.330	0.200	0.231	0.242	0.212	0.276	0.033	0.033	0.066	0.055	0.085	0.021
2,4,7-trinitro-9-fluorenone	0.382	0.216	0.382	0.416	0.250	0.299	0.311	0.266	0.349	0.034	0.034	0.083	0.071	0.116	0.033
2,4,5,7-tetranitro-9-fluorenone	0.399	0.227	0.399	0.434	0.261	0.314	0.325	0.278	0.364	0.035	0.034	0.085	0.074	0.121	0.035
8-nitrofluoranthene	0.288	0.161	0.288	0.320	0.193	0.223	0.234	0.204	0.268	0.032	0.032	0.065	0.054	0.084	0.020
2,7-dinitro-9-fluorenone	0.362	0.205	0.363	0.397	0.238	0.284	0.295	0.254	0.332	0.035	0.033	0.079	0.068	0.109	0.031
2-nitropyrene	0.284	0.162	0.284	0.316	0.194	0.223	0.234	0.206	0.267	0.032	0.032	0.061	0.050	0.078	0.017
1-nitrofluoranthene	0.305	0.173	0.305	0.338	0.205	0.237	0.248	0.218	0.284	0.033	0.032	0.068	0.057	0.087	0.021
2-nitroanthracene	0.285	0.161	0.285	0.317	0.193	0.222	0.233	0.205	0.266	0.032	0.032	0.063	0.052	0.080	0.019
1,3,6,8-tetranitropyrene	0.352	0.206	0.352	0.386	0.242	0.277	0.287	0.256	0.322	0.034	0.036	0.075	0.065	0.096	0.030
3-nitrofluoranthene	0.307	0.175	0.307	0.340	0.207	0.239	0.250	0.220	0.286	0.033	0.032	0.068	0.057	0.087	0.021
1,3,6-trinitropyrene	0.331	0.194	0.331	0.365	0.229	0.261	0.272	0.242	0.305	0.034	0.035	0.070	0.059	0.089	0.026
1,6-dinitropyrene	0.305	0.179	0.305	0.338	0.212	0.242	0.252	0.224	0.286	0.033	0.033	0.063	0.053	0.081	0.019
1,3-dinitropyrene	0.308	0.180	0.308	0.341	0.213	0.244	0.254	0.226	0.286	0.033	0.033	0.064	0.054	0.082	0.022
1,8-dinitropyrene	0.310	0.180	0.307	0.343	0.214	0.244	0.255	0.226	0.288	0.033	0.034	0.063	0.052	0.081	0.019

Image <th< th=""><th colspan="13">Table S2c. Same as Table S2a but for LUMO energy descriptor (E_{LUMO}).</th></th<>	Table S2c. Same as Table S2a but for LUMO energy descriptor (E _{LUMO}).															
4-herenalor 0.000 0.010	Name of Compound	$E_{\rm HFex}^{\rm LUMO}$	$-E_{\rm B88}^{\rm LUMO}$	$E_{\rm HF}^{\rm LUMO}$	E ^{LUMO} HFex+LYP	$-E_{\rm BLYP}^{\rm LUMO}$	$-E_{\rm B3LYP}^{\rm LUMO}$	$-E_{\rm M06}^{\rm LUMO}$	$-E_{\rm M06-L}^{\rm LUM0}$	$-E_{\rm M06-2X}^{\rm LUMO}$	-E ^{LUMO} CORR(HFex+LYP)	-E ^{LUMO} CORR(BLYP)	-E ^{LUMO} CORR(B3LYP)	$-E_{\mathrm{CORR}(\mathrm{M06})}^{\mathrm{LUMO}}$	-E ^{LUMO} CORR(M06-L)	$-E_{\rm CORR(M06-2X)}^{\rm LUMO}$
2.4.definitionalization 0.008 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.011 0.018 0.011 0.011 0.012 0.011 0.01	4-nitrotoulene	0.060	0.085	0.060	0.030	0.115	0.092	0.084	0.113	0.048	0.030	0.030	0.152	0.144	0.173	0.108
3.4-dimensional 0.018 0.001 0.000 0.114 0.112 0.111 0.024 0.024 0.034 0.044 0.012 0.013 0.012 4.4-dimensional 0.018 0.011 0.010 0.010 0.010 0.011<	2,6-dinitrotoulene	0.040	0.100	0.040	0.006	0.133	0.111	0.103	0.132	0.068	0.034	0.033	0.151	0.143	0.172	0.108
2.4.demonshere 0.051 0.055 0.051 0.045 0.046 0.187 0.186 0.107 0.010 0.026 0.026 0.014 0.188 0.186 0.187 0.186 0.026 0.021 0.014 0.118	3,4-dinitrotoulene	0.038	0.100	0.001	0.005	0.134	0.122	0.117	0.134	0.091	0.033	0.034	0.123	0.118	0.135	0.092
2.4-finitenzione 0.007 0.000 0.011 0.12 0.11 0.021 0.031 0.024 0.031 0.012 0.134 0.124 0.134	2,4-dinitrotoulene	0.031	0.105	0.031	0.000	0.136	0.115	0.107	0.135	0.074	0.031	0.031	0.146	0.138	0.166	0.105
e-betwagening 0.039 0.045 0.032 0.034 0.144 0.146	2,3-dinitrotoulene	0.039	0.100	0.002	0.006	0.131	0.122	0.117	0.134	0.091	0.033	0.031	0.124	0.119	0.136	0.093
s-integrative 0.058 0.074 0.098 0.018 0.019 0.020 0.020 0.020 0.021 0.014 0.014 0.014 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.015 0.013 0.014 0.015 0.013 0.014 0.015 0.013 0.014 0.012 0.013 0.013 0.014 0.012 0.013 0.013 0.014 0.015 0.013 0.014 0.013 0.014 0.014 0.014 0.015 0.013 0.014 0.013 0.014 0.014 0.014	6-nitroquinoline	0.039	0.095	0.039	0.008	0.126	0.105	0.099	0.126	0.066	0.031	0.031	0.144	0.138	0.165	0.105
3.6.deficiencydare 0.027 0.017 0.028 0.018 0.118 0.018 0.017 0.018 0.012 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.011 0.012 0.011 0.044 0.018 0.016 0.013 0.044 0.018 0.016 0.013 0.044 0.018 0.016 0.013 0.044 0.018 0.016 0.013 0.044 0.018 0.016 0.013 0.044 0.018 0.013 0.012 0.013 0.014 0.016 0.013 0.013 0.018 0.019 0.013 0.018 0.019 0.013 0.018 0.019 0.013 0.018 0.014 0.016 0.014 0.016 0.014 0.016 0.014 0.016 0.014 0.016 0.011 0.016 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.014 <td>3-nitrocarbazole</td> <td>0.069</td> <td>0.074</td> <td>0.069</td> <td>0.040</td> <td>0.104</td> <td>0.082</td> <td>0.075</td> <td>0.102</td> <td>0.040</td> <td>0.029</td> <td>0.030</td> <td>0.151</td> <td>0.144</td> <td>0.171</td> <td>0.109</td>	3-nitrocarbazole	0.069	0.074	0.069	0.040	0.104	0.082	0.075	0.102	0.040	0.029	0.030	0.151	0.144	0.171	0.109
3-metry-accompany 0.052 0.054 0.059 0.057 0.015 0.024 0.033 0.016 0.116 0.057 0.033 0.016 0.116 0.105 2z-dardinoutine 0.015 0.014 0.016 0.017 0.114 0.016 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.016 0.014 0.016 0.014 0.016 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.016 0.01	3,5-dinitrotoulene	0.025	0.107	0.025	-0.005	0.139	0.118	0.111	0.138	0.078	0.030	0.032	0.143	0.136	0.163	0.103
s-intergranding 0.098 0.099 0.092 0.092 0.092 0.092 0.093 0.144 0.136 0.015 2.6.definitional 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.015 0.015 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.026 0.025 0.021 0.021 0.016 0.016 0.016 0.026 0.025 0.021 0.021 0.014 0.016 0.016 0.016 0.026 0.025 0.033 0.012 0.014 0.016 0.016 0.016 0.016	3-methyl-2-nitronaphthalene	0.052	0.084	0.052	0.019	0.115	0.094	0.087	0.115	0.054	0.033	0.031	0.146	0.139	0.167	0.106
2.5-trainabare 0.015 0.114 0.017 0.018 0.018 0.018 0.003 0.124 0.126 0.0182 0.013 0.123 0.121 0.013 0.123 0.121 0.013 0.123 0.013 0.123 0.121 0.019 0.134 0.011 0.012 0.013 0.132 0.013 0.132 0.133 0.132 0.133 0.133 0.133 0.134 0.144 0.121 0.019 0.011 0.014 0.144 0.122 0.019 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.013 0.013 0.013 0.013 0.014 0.014 0.016 0.015 0.015 0.015 0.011 0.016 0.013 0.013 0.013 0.013 0.014 0.014 0.016 0.015 0.014 0.016 0.015 0.014 0.016 0.015 0.014 0.016 0.016 0.016 0.016	5-nitroquinoline	0.038	0.094	0.038	0.006	0.127	0.106	0.100	0.127	0.067	0.032	0.033	0.144	0.138	0.165	0.105
13.68 examplessaphmalee 0.021 0.133 0.023 0.103 0.013 0.012 0.013 0.012 0.014 0.012 0.013 0.012 0.014 0.013 0.013 0.014 0.014 0.013 0.013 0.014 0.014 0.013 0.01	2,5-dinitrotoulene	0.015	0.114	0.016	-0.017	0.148	0.128	0.121	0.148	0.087	0.032	0.034	0.144	0.137	0.164	0.103
1.3-diministration 0.023 0.111 0.037 0.042 0.121 0.142 0.142 0.041 0.031 0.031 0.131 0.132 0.133 0.131 0.133 0.134 0.143 0.143 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.033 0.133 0.033 <td>1,3,6,8-tetranitronaphthalene</td> <td>-0.021</td> <td>0.135</td> <td>-0.021</td> <td>-0.053</td> <td>0.168</td> <td>0.153</td> <td>0.147</td> <td>0.171</td> <td>0.120</td> <td>0.032</td> <td>0.033</td> <td>0.132</td> <td>0.126</td> <td>0.150</td> <td>0.099</td>	1,3,6,8-tetranitronaphthalene	-0.021	0.135	-0.021	-0.053	0.168	0.153	0.147	0.171	0.120	0.032	0.033	0.132	0.126	0.150	0.099
2-nitocochoorde 0.017 0.082 0.087 0.112 0.059 0.058 0.039 0.139 0.139 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.131 0.051 0.132 0.051 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.036 0.034 0.036 0.034 0.036 0.038 0.033 0.033 0.033 0.034 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.038 0.036 0.038 0.036	1,3-dinitrobenzene	0.023	0.111	0.023	-0.007	0.142	0.121	0.114	0.142	0.081	0.030	0.031	0.144	0.137	0.165	0.104
4-Intronactive 0.047 0.042 0.052 0.011 0.112 0.069 0.015 0.013 0.043 0.143 0.143 0.015 0.0143 0.015 0.0135 0.0145 0.015 0.0155 0.0135 0.0145 0.015 0.0135 0.0142 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.013 0.014 0.015 0.013 0.014 0.015 0.013 0.014 0.015 0.013 0.014 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.013 0.014 0.015 0.015 0.013 0.014 0.015 0.015 0.013 0.014 0.014 0.015 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.014 0.015 0.015 0.015 0.015	2-nitrocarbazole	0.047	0.082	0.047	0.017	0.112	0.092	0.086	0.112	0.054	0.030	0.030	0.139	0.133	0.159	0.101
2,A-terristrobusiene 0.020 0.013 0.010 0.014 0.16 0.025 0.023 0.023 0.124 0.016 0.023 0.124 0.016 0.023 0.141 0.106 0.030 2.4.6 trinstrobusiene 0.006 0.007 0.008 0.008 0.008 0.008 0.008 0.012 0.012 0.141 0.141 0.101 0-introstrobusiene 0.006 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.011 0.008 0.008 0.003 0.012 0.148 0.160 0.118 0.007 0.011 0.003 0.013 0.012 0.141 0.138 0.010 2.3.6 trinstrobusiene 0.007 0.018 0.018 0.013 0.013 0.013 0.013 0.013 0.014 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 <t< td=""><td>4-nitrocarbazole</td><td>0.047</td><td>0.082</td><td>0.052</td><td>0.017</td><td>0.112</td><td>0.091</td><td>0.087</td><td>0.112</td><td>0.054</td><td>0.030</td><td>0.030</td><td>0.143</td><td>0.139</td><td>0.164</td><td>0.106</td></t<>	4-nitrocarbazole	0.047	0.082	0.052	0.017	0.112	0.091	0.087	0.112	0.054	0.030	0.030	0.143	0.139	0.164	0.106
•methy-antronghinden 0.057 0.025 0.113 0.094 0.014 0.051 0.032 0.030 0.148 0.149 0.183 2.4 drintituotom 0.036 0.034 0.036 0.032 0.043 0.032 0.142 0.144 0.161 2-htmanphiltene 0.045 0.084 0.036 0.034 0.032 0.043 0.032 0.144 0.122 0.144 0.161 2-htmanphiltene 0.045 0.084 0.046 0.045 0.048 0.046 0.043 0.138 0.018 0.031 0.028 0.142 0.138 0.031 0.028 0.142 0.138 0.031 0.028 0.143 0.138 0.031 0.038 0.141 0.133 0.030 0.032 0.143 0.143 0.143 0.143 0.143 0.143 0.033 0.033 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143	2,3,4-trinitrotoulene	0.020	0.113	0.010	-0.011	0.146	0.125	0.118	0.146	0.085	0.031	0.033	0.135	0.128	0.156	0.095
2.4.E-triningualization 0.008 0.0121 0.002 0.121 0.008 0.0124 0.142 0.143 0.161 0.013 Paringanificance 0.048 0.048 0.049 0.010 0.117 0.098 0.030 0.013 0.014 0.013 0.013 0.013 0.014 0.013 0.013 0.014 0.013 0.013 0.014 0.014 0.015 0.014 0.013 0.013 0.014 0.014 0.016 0.013 0.013 0.013 0.014 0.014 0.016 0.013 0.013 0.013 0.014 0.014 0.016 0.013 0.013 0.013 0.014 0.014 0.016 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	1-methyl-2-nitronaphthalene	0.057	0.083	0.057	0.025	0.113	0.091	0.084	0.112	0.051	0.032	0.030	0.148	0.141	0.169	0.108
9-Introductivacene 0.036 0.044 0.038 0.049 0.049 0.046 0.049 0.046 0.049 0.046 0.049 0.046 0.049 0.046 0.049 0.046 0.049 0.046 0.041 0.047 0.033 0.042 0.014 0.013 0.042 0.014 0.013 0.042 0.014 0.013 0.041 0.012 0.033 0.042 0.013 0.013 0.021 0.013 0.013 0.012 0.013 0.014 0.014 0.011 0.011 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.014 0.011 1.3.5-minitobination 0.007 0.012 0.001 0.017 0.017 0.012 0.011 0.015 0.012 0.031 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.016 0.015 0.016 0.015 0.016 <t< td=""><td>2,4,6-trinitrotoulene</td><td>0.008</td><td>0.121</td><td>0.008</td><td>-0.022</td><td>0.153</td><td>0.134</td><td>0.126</td><td>0.153</td><td>0.095</td><td>0.030</td><td>0.032</td><td>0.142</td><td>0.134</td><td>0.161</td><td>0.103</td></t<>	2,4,6-trinitrotoulene	0.008	0.121	0.008	-0.022	0.153	0.134	0.126	0.153	0.095	0.030	0.032	0.142	0.134	0.161	0.103
Intercomplithene 0.049 0.049 0.016 0.118 0.007 0.018 0.075 0.033 0.032 0.144 0.139 0.167 0.107 2.ntronoptithene 0.002 0.012 0.007 0.008 0.015 0.016 0.018 0.019 0.013 0.020 0.114 0.115 0.003 0.0142 0.116 0.016 0.014 0.116 0.021 0.014 0.013 0.012 0.013 0.014 0.116 0.041 0.116 0.041 0.116 0.041 0.116 0.041 0.012 0.033 0.014 0.116 0.041 0.114 0.014 0.012 0.033 0.014 0.0	9-nitroanthracene	0.036	0.084	0.036	0.004	0.117	0.098	0.093	0.118	0.066	0.032	0.033	0.134	0.129	0.154	0.102
2-Intropythine 0.045 0.046 0.015 0.118 0.026 0.018 0.018 0.026 0.0142 0.118 0.018 0.014 2.3.6-minitoculere 0.000 0.0122 0.001 0.016 0.116 0.011 0.018 0.012 0.014 0.014 0.018 0.012 0.014 0.014 0.014 0.014 0.0142 0.014 0.0142 0.014 0.0142 0.014 0.0142 0.014 0.014 0.0142 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.010 0.016 0.011 0.015 0.014 0.012 0.013 0.018 0.012 0.013 0.018 0.012 0.013 0.014 0.015 0.016 0.015 0.016 0.012 0.015 0.016 0.012 0.015 0.016 0.012 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.016	1-nitronaphthlene	0.049	0.086	0.049	0.016	0.118	0.097	0.090	0.118	0.057	0.033	0.032	0.146	0.139	0.167	0.106
23.5-trinitoriandumene -0.027 -0.028 0.154 0.164 0.162 0.118 0.031 0.028 0.142 0.118 0.135 0.031 23.5-trinitoriandumene 0.000 0.122 0.001 0.014 0.116 0.009 0.117 0.068 0.032 0.033 0.130 0.126 0.169 0.100 1.3-trinitoriandumene 0.007 0.017 0.017 0.017 0.017 0.016 0.141 0.131 0.141 0.028 0.032 0.033 0.130 0.132 0.161 0.102 1.5-drinitoriandumene 0.017 0.017 0.011 0.188 0.112 0.121 0.028 0.033 0.033 0.134 0.134 0.168 0.102 1.5-drinitoriandumene 0.045 0.046 0.015 0.104 0.135 0.012 0.023 0.033 0.013 0.144 0.134 0.168 0.133 0.033 0.033 0.033 0.134 0.134 0.168 0.135 0.161	2-nitronaphthlene	0.045	0.088	0.045	0.015	0.118	0.098	0.091	0.118	0.059	0.030	0.030	0.143	0.136	0.163	0.104
23.6±miratoriume 0.000 0.122 0.001 0.034 0.147 0.038 0.147 0.018 0.038 0.147 0.018 0.038 0.147 0.018 0.038 0.147 0.018 0.038 0.017 0.016 0.019 0.011 0.038 0.031 0.012 0.014 0.014 0.014 0.013 0.032 0.013 0.013 0.016 0.014 0.012 0.011 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.012 0.011 0.013 0.014 0.013 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	2,3,5-trinitrotoulene	-0.027	0.126	-0.027	-0.058	0.154	0.169	0.145	0.162	0.118	0.031	0.028	0.142	0.118	0.135	0.091
Grinzbarzelgiprene 0.032 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.001 0.012 0.001 0.012 0.001 0.012 0.001 0.012 0.001 0.012 0.001 0.012 0.011 0.012 0.011 0.012 0.013 0.113 0.013 0.011 0.002 0.013 0.133 0.113 0.012 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.032 0.031 0.014 0.013 0.013 0.013 0.014 0.014 0.013 0.014 0.013 0.014 0.015 0.031 0.014 0.013 0.014 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 <td>2.3.6-trinitrotoulene</td> <td>0.000</td> <td>0.122</td> <td>0.001</td> <td>-0.034</td> <td>0.160</td> <td>0.146</td> <td>0.141</td> <td>0.159</td> <td>0.115</td> <td>0.034</td> <td>0.038</td> <td>0.147</td> <td>0.142</td> <td>0.160</td> <td>0.116</td>	2.3.6-trinitrotoulene	0.000	0.122	0.001	-0.034	0.160	0.146	0.141	0.159	0.115	0.034	0.038	0.147	0.142	0.160	0.116
13.8-minrobenzane 0.000 0.012 0.001 0.013 0.0160 0.0141 0.0141 0.0132 0.0141 0.0132 0.0141 0.0132 0.0131 0.0102 13-dinitronspittlene 0.022 0.104 0.022 0.011 0.138 0.119 0.112 0.139 0.081 0.033 0.013 0.141 0.131 0.161 0.013 5-introacenapithene 0.051 0.022 0.017 0.018 0.018 0.012 0.031 0.0141 0.013 0.0161 0.013 3.45-initrotoulene 0.046 0.045 0.046 0.017 0.149 0.111 0.126 0.052 0.024 0.033 0.044 0.131 0.012 0.102 2-initrotoulene 0.029 0.039 0.012 0.115 0.016 0.128 0.013 0.013 0.113 0.015 0.010 0.128 0.030 0.031 0.113 0.150 0.012 2-finitrotourene 0.045 0.041 0.186 0.018 0.012 0.013 0.013 0.013 0.013 0.113 0.150<	6-nitrobenzolalpyrene	0.032	0.083	0.032	0.000	0.116	0.098	0.094	0.117	0.068	0.032	0.033	0.130	0.126	0.149	0.100
13-distitutionaphthene 0.017 0.017 0.017 0.010 0.121 0.115 0.141 0.082 0.032 0.033 0.138 0.132 0.102 1.5-dintronaphthene 0.052 0.014 0.022 0.011 0.138 0.112 0.139 0.081 0.032 0.031 0.144 0.137 0.163 0.013 3.4.5-trintrobulene 0.016 0.445 0.005 0.017 0.131 0.126 0.152 0.044 0.033 0.044 0.134 0.160 0.012 2.Abrintrobulene 0.046 0.045 0.046 0.015 0.048 0.012 0.128 0.032 0.030 0.013 0.134 0.160 0.102 2.4.5-trintrobulene 0.016 0.016 0.0159 0.150 0.161 0.112 0.137 0.032 0.030 0.031 0.134 0.128 0.012 2.4.5-trintrobulene 0.016 0.016 0.019 0.159 0.163 0.117 0.032 0.031 0.1	1.3.5-trinitrobenzene	0.000	0.128	0.000	-0.031	0.160	0.141	0.134	0.161	0.102	0.031	0.032	0.141	0.134	0.161	0.102
1.5-dinitronaphtNene 0.022 0.104 0.022 -0.011 0.138 0.119 0.112 0.031 0.031 0.034 0.141 0.113 0.113 5-nitrosenaphthene 0.051 0.082 0.061 0.019 0.113 0.029 0.066 0.112 0.054 0.032 0.031 0.144 0.137 0.161 0.018 3-distributorene 0.0046 0.045 0.046 0.017 0.149 0.131 0.126 0.098 0.014 0.055 0.030 0.031 0.141 0.134 0.160 0.102 2.4/5trinitorioutene 0.027 0.021 0.0102 0.0102 0.0125 0.108 0.112 0.137 0.032 0.033 0.141 0.134 0.118 0.112 0.123 0.132 0.131 0.132 0.031 0.031 0.133 0.131 0.132 0.131 0.132 0.131 0.032 0.033 0.033 0.131 0.133 0.131 0.131 0.132 0.131 0.132 0.131 0.031 0.033 0.033 0.033 0.033 0.033 <td>1.3-dinitronaphthlene</td> <td>0.017</td> <td>0.107</td> <td>0.017</td> <td>-0.015</td> <td>0.140</td> <td>0.121</td> <td>0.115</td> <td>0.141</td> <td>0.085</td> <td>0.032</td> <td>0.033</td> <td>0.138</td> <td>0.132</td> <td>0.158</td> <td>0.102</td>	1.3-dinitronaphthlene	0.017	0.107	0.017	-0.015	0.140	0.121	0.115	0.141	0.085	0.032	0.033	0.138	0.132	0.158	0.102
S-introacenaphthene 0.051 0.082 0.093 0.019 0.113 0.093 0.094 0.032 0.031 0.144 0.137 0.163 0.105 3.4.5-introtourene 0.016 0.145 -0.005 0.017 0.149 0.130 0.152 0.094 0.033 0.004 0.126 0.121 0.147 0.088 2.Aritrotucorene 0.046 0.085 0.046 0.016 0.115 0.066 0.088 0.114 0.056 0.030 0.031 0.137 0.131 0.157 0.102 1.8-dintroduolene 0.027 0.124 0.007 0.150 0.145 0.163 0.119 0.032 0.031 0.137 0.131 0.157 0.102 2.4-strintroloulene 0.045 0.016 0.014 0.184 0.112 0.117 0.082 0.030 0.031 0.134 0.128 0.153 0.092 2.rintrobenanthrene 0.043 0.087 0.043 0.011 0.117 0.059 0.031 <td>1.5-dinitronaphthlene</td> <td>0.022</td> <td>0.104</td> <td>0.022</td> <td>-0.011</td> <td>0.138</td> <td>0.119</td> <td>0.112</td> <td>0.139</td> <td>0.081</td> <td>0.033</td> <td>0.034</td> <td>0.141</td> <td>0.134</td> <td>0.161</td> <td>0.103</td>	1.5-dinitronaphthlene	0.022	0.104	0.022	-0.011	0.138	0.119	0.112	0.139	0.081	0.033	0.034	0.141	0.134	0.161	0.103
3.4.5-trinitrotoulene 0.016 0.145 -0.005 -0.017 0.149 0.131 0.126 0.152 0.094 0.033 0.004 0.126 0.121 0.147 0.089 2-nitrofluorene 0.046 0.085 0.046 0.016 0.115 0.096 0.088 0.114 0.030 0.031 0.141 0.141 0.161 0.102 2.4.5-trinitrotourene 0.027 0.027 0.059 0.159 0.160 0.145 0.013 0.013 0.131 0.157 0.102 2.7-dintrofluorene 0.012 0.124 0.007 0.0059 0.153 0.018 0.013 0.013 0.134 0.128 0.053 0.031 0.134 0.128 0.153 0.060 0.031 0.134 0.138 0.157 0.102 2-ritrofluoranthene 0.043 0.047 0.043 0.012 0.117 0.069 0.031 0.031 0.134 0.128 0.157 0.102 2-ritrofluoranthene 0.033 0.	5-nitroacenaphthene	0.051	0.082	0.051	0.019	0.113	0.093	0.086	0.112	0.054	0.032	0.031	0.144	0.137	0.163	0.105
2-hitrofluorene 0.046 0.085 0.046 0.016 0.015 0.095 0.088 0.114 0.056 0.030 0.0141 0.134 0.113 0.110 1.8-dinitronghthlene 0.029 0.005 0.029 -0.011 0.155 0.162 0.128 0.073 0.030 0.031 0.137 0.131 0.157 0.002 2.4-S-trinitroluorante 0.002 0.016 0.015 0.016 0.014 0.014 0.014 0.014 0.014 0.015 0.016 0.013 0.131 0.132 0.002 2.7-dintrofluorantene 0.042 0.083 0.042 0.011 0.014 0.049 0.088 0.011 0.031 0.134 0.138 0.030 -introphenanthrene 0.043 0.087 0.041 0.011 0.049 0.081 0.011 0.050 0.031 0.013 0.134 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.143 0.150 0.133	3 4 5-trinitrotoulene	0.016	0.145	-0.005	-0.017	0.149	0 131	0.126	0.152	0.094	0.033	0.004	0 126	0.121	0.147	0.089
1.8-dinitronaphthiene 0.029 0.029 0.001 0.126 0.108 0.102 0.128 0.073 0.030 0.031 0.137 0.131 0.157 0.102 2.4,5-initrotoulene -0.027 0.124 -0.027 0.059 0.159 0.150 0.145 0.163 0.119 0.032 0.033 0.134 0.128 0.099 2.7-diitrofluorene 0.042 0.083 0.042 0.011 0.114 0.094 0.088 0.115 0.060 0.031 0.031 0.136 0.130 0.157 0.002 2-nitrofluoranthene 0.043 0.087 0.043 0.012 0.117 0.097 0.051 0.030 0.140 0.143 0.160 0.102 2-nitrofluoranthene 0.037 0.066 0.037 0.007 0.116 0.097 0.021 0.068 0.031 0.033 0.133 0.132 0.128 0.151 0.099 2-nitrofluoranthene 0.031 0.032 0.032 0.032 0	2-nitrofluorene	0.046	0.085	0.046	0.016	0.115	0.095	0.088	0.114	0.056	0.030	0.030	0.120	0.134	0.160	0.102
2.4.5-inititooulare -0.027 0.124 -0.027 -0.059 0.159 0.166 0.145 0.163 0.119 0.032 0.035 0.123 0.118 0.136 0.092 2.7-dinitrofluorene 0.016 0.105 0.016 -0.014 0.136 0.118 0.112 0.137 0.082 0.030 0.031 0.134 0.128 0.153 0.098 1-nitoebacg/geyrene 0.043 0.087 0.043 0.012 0.117 0.097 0.091 0.117 0.059 0.031 0.013 0.134 0.124 0.160 0.102 2-nitrophenanthrene 0.031 0.043 0.007 0.116 0.097 0.091 0.117 0.063 0.030 0.134 0.124 0.165 0.100 1-nitroprene 0.031 0.088 0.031 0.010 0.117 0.063 0.031 0.013 0.133 0.124 0.164 0.104 2,4,5,7-tetraintro-fluorenone 0.043 0.065 0.043 0.017 <	1 8-dinitronaphthlene	0.029	0.095	0.029	-0.001	0.126	0 108	0.102	0.128	0.073	0.030	0.031	0 137	0.131	0.157	0.102
27-diminiformation 0.016 0.016 0.016 0.014 0.016 0.018 0.012 0.017 0.082 0.030 0.031 0.134 0.128 0.133 0.098 1-nitrobenzo[e]pyrene 0.042 0.083 0.042 0.011 0.114 0.094 0.088 0.115 0.060 0.031 0.031 0.134 0.144 <	2 4 5-trinitrotoulene	-0.027	0.124	-0.027	-0.059	0.159	0 150	0.145	0.163	0.119	0.032	0.035	0 123	0.118	0.136	0.092
1-initobanoglejpyrene 0.042 0.083 0.042 0.011 0.114 0.094 0.088 0.115 0.060 0.031 0.031 0.136 0.130 0.137 0.102 2-nitrophenanthrene 0.033 0.087 0.043 0.011 0.097 0.091 0.117 0.055 0.031 0.030 0.140 0.134 0.166 0.102 2-nitrofluoranthene 0.031 0.088 0.031 0.007 0.116 0.097 0.091 0.117 0.063 0.030 0.140 0.134 0.160 0.102 1-nitropyrene 0.031 0.088 0.031 0.000 0.119 0.102 0.097 0.110 0.063 0.031 0.031 0.133 0.128 0.151 0.099 4.7-triintro-9-fluorenone 0.043 0.088 0.031 0.134 0.161 0.182 0.135 0.033 0.031 0.134 0.144 0.095 2.4-Triintro-9-fluorenone -0.040 0.043 0.012 0.048	2.7-dinitrofluorene	0.016	0.105	0.016	-0.014	0.136	0.118	0.112	0.137	0.082	0.030	0.031	0.134	0.128	0.153	0.098
Initroduced prime 0.043 0.087 0.043 0.012 0.117 0.097 0.091 0.117 0.059 0.031 0.030 0.140 0.134 0.160 0.102 2-nitrophenanthrene 0.037 0.086 0.037 0.007 0.116 0.097 0.091 0.117 0.063 0.030 0.030 0.134 0.128 0.154 0.100 1-nitropyrene 0.031 0.088 0.031 0.000 0.119 0.102 0.097 0.120 0.068 0.031 0.013 0.128 0.154 0.100 1-nitropyrene 0.024 0.036 0.043 0.011 0.117 0.097 0.120 0.068 0.031 0.031 0.133 0.128 0.160 0.134 0.160 0.134 0.160 0.032 0.031 0.031 0.128 0.161 0.185 0.135 0.033 0.031 0.127 0.121 0.144 0.148 0.092 0.131 0.091 0.135 0.135 0.033	1-nitrobenzo[e]pyrene	0.042	0.083	0.042	0.011	0.114	0.094	0.088	0.115	0.060	0.031	0.031	0 136	0.130	0.157	0.102
7.nitrolucranthene 0.037 0.086 0.037 0.007 0.116 0.097 0.091 0.117 0.063 0.030 0.134 0.128 0.154 0.100 1-nitropyrene 0.031 0.088 0.031 0.003 0.134 0.128 0.151 0.099 6-nitrochrysene 0.043 0.085 0.043 0.011 0.117 0.097 0.120 0.068 0.031 0.031 0.133 0.128 0.151 0.099 6-nitrochrysene 0.024 0.035 0.043 0.0124 0.148 0.017 0.061 0.032 0.032 0.033 0.134 0.128 0.164 0.044 2,4,5,7-tetraintro-9-fluorenone -0.040 0.148 -0.040 -0.073 0.182 0.167 0.161 0.185 0.133 0.033 0.130 0.124 0.148 0.095 2,4,5,7-tetraintro-9-fluorenone -0.005 0.122 -0.006 -0.036 0.134 0.132 0.127 0.131 0.031 0.032	2-nitrophenanthrene	0.043	0.087	0.043	0.012	0.117	0.097	0.091	0.117	0.059	0.031	0.030	0.140	0.134	0.160	0.102
Initrograme 0.031 0.088 0.033 0.003 0.119 0.102 0.097 0.120 0.068 0.031 0.133 0.128 0.151 0.099 6-nitrochrysene 0.043 0.085 0.043 0.011 0.117 0.097 0.011 0.117 0.061 0.032 0.032 0.140 0.134 0.160 0.144 2.4,5.7-teintro-9-fluorenone -0.040 0.148 -0.056 0.169 0.154 0.148 0.122 0.032 0.033 0.130 0.124 0.148 0.095 2.4,5.7-teintro-9-fluorenone -0.040 0.148 -0.040 0.148 0.017 0.182 0.167 0.161 0.185 0.033 0.033 0.130 0.121 0.148 0.095 0.033 0.033 0.012 0.143 0.017 0.107 0.122 0.121 0.048 0.132 0.031 0.032 0.132 0.121 0.107 0.138 0.131 0.031 0.132 0.122 0.161 0.097	7-nitrofluoranthene	0.037	0.086	0.037	0.007	0.116	0.097	0.091	0.117	0.063	0.030	0.030	0 134	0.128	0.154	0.100
Intropyrate 0.043 0.043 0.043 0.043 0.011 0.117 0.097 0.091 0.117 0.061 0.032 0.032 0.104 0.134 0.166 0.104 2.4,7-trinitro-9-fluorenone -0.024 0.136 -0.024 -0.056 0.169 0.154 0.148 0.172 0.120 0.032 0.033 0.130 0.124 0.148 0.096 2.4,5,7-tetraitro-9-fluorenone -0.040 0.148 -0.040 0.0132 0.132 0.033 0.130 0.124 0.148 0.096 2.4,5,7-tetraitro-9-fluorenone -0.005 0.012 -0.006 0.032 0.131 0.031 0.032 0.132 0.127 0.015 0.014 0.015 0.095 2.n-tirop-fluorenone 0.037 0.082 0.043 0.131 0.091 0.012 0.016 0.013 0.012 0.125 0.103 0.112 0.031 0.032 0.144 0.138 0.160 0.191 1-nitrofluoranthene 0.024	1-nitropyrene	0.031	0.088	0.031	0.000	0.119	0 102	0.097	0.120	0.068	0.031	0.031	0 133	0.128	0.151	0.099
2.4,7-tinitro-9-fluorenone -0.024 0.136 -0.024 0.056 0.169 0.148 0.172 0.120 0.032 0.033 0.130 0.124 0.148 0.096 2.4,7-tinitro-9-fluorenone -0.040 0.148 -0.040 -0.073 0.182 0.167 0.161 0.185 0.135 0.033 0.034 0.127 0.121 0.145 0.095 8-nitrofluoranthene 0.059 0.083 0.059 0.029 0.113 0.091 0.084 0.112 0.048 0.030 0.030 0.150 0.143 0.171 0.107 2,7-tinitro-9-fluorenone -0.005 0.122 -0.006 -0.036 0.154 0.138 0.132 0.157 0.103 0.031 0.032 0.132 0.126 0.151 0.097 2-ritropyrene 0.037 0.086 0.046 0.118 0.099 0.133 0.122 0.131 0.031 0.031 0.132 0.127 0.101 1-nitrofluoranthene 0.030 0.030<	6-nitrochrysene	0.043	0.085	0.043	0.011	0.117	0.097	0.091	0.117	0.061	0.032	0.032	0.140	0.134	0.160	0.104
1.1. Structure 0.04 0.04 0.04 0.04 0.04 0.07 0.18 0.167 0.161 0.185 0.135 0.033 0.034 0.127 0.121 0.145 0.095 8-nitrofluoranthene 0.059 0.083 0.059 0.029 0.113 0.091 0.084 0.112 0.048 0.030 0.030 0.150 0.143 0.171 0.107 2.7-dinitro-9-fluorenone -0.005 0.122 -0.006 -0.036 0.154 0.138 0.132 0.131 0.032 0.132 0.126 0.151 0.097 2-nitropyrene 0.037 0.086 0.045 0.006 0.118 0.099 0.033 0.119 0.064 0.031 0.032 0.144 0.138 0.167 0.103 2-nitropyrene 0.030 0.094 0.024 -0.007 0.125 0.108 0.132 0.070 0.031 0.132 0.132 0.131 0.133 0.132 0.117 0.116 0.131 0.035<	2.4.7-trinitro-9-fluorenone	-0.024	0.136	-0.024	-0.056	0.169	0.154	0.148	0.172	0.120	0.032	0.033	0.130	0.124	0.148	0.096
Anitrofluoranthere0.0590.0830.0590.0290.1130.0910.0840.1120.0480.0300.0300.1500.1430.1710.1072.7-dinitro-9-fluorenone-0.0050.122-0.006-0.0360.1540.1380.1320.1570.1030.0310.0320.1320.1260.1510.0972-nitropyrene0.0370.0860.0450.0060.1180.0990.0930.1190.0640.0310.0320.1440.1380.1640.1091-nitrofluoranthere0.0240.0940.024-0.0070.1250.1080.1270.0760.0310.0310.1320.1270.1510.1002-nitropyrene0.0300.0910.0300.0000.1210.1030.0980.1230.0700.0300.0300.1330.1280.1530.1001,3,6+ternitropyrene-0.0380.137-0.038-0.0730.1730.1610.1550.1760.1310.0320.0320.1220.1170.1380.0933-nitrofluoranthere0.0210.0950.021-0.0100.1270.1110.1060.1300.0780.0310.0320.1220.1270.1510.0991,3,6-trinitropyrene-0.0170.1120.0170.1430.1380.1600.1120.0340.0340.1260.1210.1430.0951,3-dinitropyrene0.0170.1130.1340.1370.143<	2 4 5 7-tetranitro-9-fluorenone	-0.040	0.148	-0.040	-0.073	0.182	0 167	0.161	0.185	0.135	0.033	0.034	0 127	0.121	0.145	0.095
2,7-dinitro-9-fluorenone -0.005 0.122 -0.006 -0.036 0.134 0.132 0.135 0.031 0.032 0.132 0.126 0.151 0.097 2,r-dinitro-9-fluorenone 0.037 0.086 0.045 0.006 0.118 0.099 0.093 0.119 0.064 0.031 0.032 0.144 0.138 0.164 0.109 1-nitrofluoranthene 0.024 0.094 0.024 -0.007 0.125 0.108 0.132 0.071 0.132 0.127 0.151 0.109 1-nitrofluoranthracene 0.030 0.091 0.030 0.000 0.121 0.103 0.122 0.070 0.030 0.031 0.132 0.127 0.151 0.100 1,3,6,8-tetranitropyrene -0.038 0.137 -0.038 -0.017 0.013 0.012 0.013 0.013 0.032 0.132 0.117 0.138 0.093 3,-hitrofluoranthene 0.021 0.017 -0.010 0.127 0.111 0.106	8-nitrofluoranthene	0.059	0.083	0.059	0.029	0.113	0.091	0.084	0.112	0.048	0.030	0.030	0.150	0.143	0.171	0.107
2-nitropyrene 0.037 0.086 0.045 0.006 0.118 0.099 0.093 0.119 0.064 0.031 0.032 0.144 0.138 0.164 0.109 1-nitrofluoranthene 0.024 0.094 0.024 -0.007 0.125 0.108 0.103 0.127 0.031 0.031 0.132 0.144 0.138 0.164 0.109 1-nitrofluoranthene 0.024 0.094 0.024 -0.007 0.125 0.108 0.103 0.021 0.031 0.031 0.031 0.132 0.127 0.151 0.100 2-nitroanthracene 0.030 0.091 0.030 0.000 0.121 0.103 0.098 0.123 0.070 0.030 0.031 0.132 0.127 0.151 0.100 1,3,6,8-tetranitropyrene -0.038 0.137 -0.038 -0.073 0.117 0.111 0.105 0.131 0.032 0.132 0.117 0.131 0.032 0.132 0.127 0.151 0.099	2 7-dinitro-9-fluorenone	-0.005	0.122	-0.006	-0.036	0.154	0 138	0.132	0.157	0.103	0.031	0.032	0 132	0.126	0.151	0.097
Introfluoranthene 0.004 0.004 0.007 0.001 0.011 0.001 0.011 0.001 0.011 0.001 0.011 0.001 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	2-nitronyrene	0.037	0.086	0.045	0.006	0.118	0.099	0.093	0.119	0.064	0.031	0.032	0.102	0.138	0.164	0.109
2-nitroanthracene 0.030 0.091 0.030 0.000 0.121 0.103 0.098 0.123 0.070 0.030 0.030 0.133 0.128 0.133 0.133 0.128 0.133 <td>1-nitrofluoranthene</td> <td>0.024</td> <td>0.094</td> <td>0 024</td> <td>-0.007</td> <td>0.125</td> <td>0 108</td> <td>0.103</td> <td>0.127</td> <td>0.076</td> <td>0.031</td> <td>0.031</td> <td>0 132</td> <td>0.127</td> <td>0.151</td> <td>0.100</td>	1-nitrofluoranthene	0.024	0.094	0 024	-0.007	0.125	0 108	0.103	0.127	0.076	0.031	0.031	0 132	0.127	0.151	0.100
1.3.6.8-tetranitropyrene 0.001 0.012 0.013 0.111 0.010 0.112 0.110 0.111 0.110 0.111 0.111 0.111 0.111 0.012 0.011 0.012 0.111 0.012 0.011 0.012 0.111 0.013 0.012 0.013 0.012 0.013 0.012 0.012 0.013 0.012 0.013 0.012 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0	2-nitroanthracene	0.030	0.091	0.024	0.000	0.121	0 103	0.098	0.123	0,070	0.030	0.030	0 133	0.128	0.153	0.100
Apply black and opplying Output	1 3 6 8-tetranitronyrene	-0.038	0.137	-0.038	-0.073	0.173	0.161	0.155	0,176	0,131	0.035	0.036	0 123	0.117	0.138	0.093
1,3,6-trinitropyrene -0.017 0.123 -0.017 -0.051 0.157 0.143 0.138 0.160 0.112 0.034 0.034 0.126 0.121 0.143 0.095 1,3,6-trinitropyrene 0.017 0.101 0.017 -0.015 0.134 0.138 0.160 0.112 0.034 0.034 0.126 0.121 0.143 0.095 1,6-dinitropyrene 0.017 0.101 0.017 -0.015 0.134 0.117 0.111 0.135 0.084 0.032 0.033 0.134 0.152 0.101 1,3-dinitropyrene 0.004 0.106 0.004 -0.028 0.139 0.124 0.112 0.091 0.032 0.034 0.136 0.145 0.096 1.8-dinitropyrene 0.006 0.106 0.012 -0.026 0.140 0.124 0.122 0.142 0.032 0.034 0.136 0.134 0.154 0.103	3-nitrofluoranthene	0.021	0.095	0.021	-0.010	0.127	0.111	0.106	0.130	0.078	0.031	0.032	0.132	0.127	0.151	0.099
1,6-dinitropyrene 0.017 0.101 0.017 -0.015 0.134 0.117 0.111 0.135 0.084 0.032 0.033 0.134 0.128 0.120 0.110 0.010 1,6-dinitropyrene 0.004 0.010 0.004 -0.028 0.139 0.117 0.111 0.135 0.084 0.032 0.033 0.134 0.128 0.152 0.101 1,3-dinitropyrene 0.004 0.106 0.004 -0.028 0.139 0.124 0.118 0.141 0.092 0.032 0.033 0.128 0.122 0.145 0.096 1.8-dinitropyrene 0.006 0.106 0.012 -0.026 0.140 0.124 0.122 0.142 0.091 0.032 0.034 0.136 0.134 0.154 0.103	1.3.6-trinitropyrene	-0.017	0.123	-0.017	-0.051	0.157	0.143	0.138	0.160	0.112	0.034	0.034	0.126	0.121	0.143	0.095
1,3-dinitropyrene 0.004 0.106 0.002 0.124 0.124 0.124 0.012 0.001 0.120 0.120 0.120 0.121 0.121 1,3-dinitropyrene 0.006 0.106 0.012 -0.028 0.139 0.124 0.124 0.091 0.032 0.034 0.136 0.134 0.154 0.103	1.6-dinitropyrene	0.017	0.101	0.017	-0.015	0.134	0.117	0.111	0.135	0.084	0.032	0.033	0.134	0.128	0.152	0.101
18-dipitropyrepe 0.006 0.106 0.012 -0.026 0.140 0.124 0.122 0.042 0.091 0.032 0.034 0.136 0.134 0.154 0.103	1.3-dinitropyrene	0.004	0.106	0.004	-0.028	0.139	0.124	0.118	0.141	0.092	0.032	0.033	0.128	0.122	0.145	0.096
	1,8-dinitropyrene	0.006	0.106	0.012	-0.026	0.140	0.124	0.122	0.142	0.091	0.032	0.034	0.136	0.134	0.154	0.103

Table S2d. Same as Table S2a but for absolute electronegativity descriptor (χ).															
Name of Compound	χήεχ	Хв88	χhe	χ ΗΕΧ+LYP	χβγλ	ΧΒ3LYP	Хм06	Хм06-L	Хм06-2Х	χcorr(HFX+LYP)	XCORR(BLYP)	XCORR(B3LYP)	XCORR(M06)	χcorr(M06-L)	χcorr(M06-2X)
4-nitrotoulene	0.152	0.142	0.152	0.184	0.174	0.185	0.187	0.182	0.188	0.032	0.032	0.033	0.035	0.030	0.037
2.6-dinitrotoulene	0.175	0.155	0.175	0.209	0.189	0.204	0.207	0.197	0.211	0.035	0.034	0.030	0.032	0.023	0.036
3.4-dinitrotoulene	0.176	0.128	0.151	0.209	0.187	0.169	0.171	0.163	0.175	0.034	0.060	0.018	0.020	0.012	0.024
2,4-dinitrotoulene	0.181	0.160	0.181	0.214	0.193	0.210	0.211	0.202	0.215	0.033	0.033	0.029	0.030	0.021	0.034
2,3-dinitrotoulene	0.174	0.128	0.151	0.207	0.158	0.169	0.172	0.163	0.175	0.034	0.030	0.018	0.021	0.012	0.025
6-nitroquinoline	0.152	0.147	0.152	0.185	0.178	0.186	0.188	0.186	0.191	0.033	0.031	0.034	0.036	0.034	0.039
3-nitrocarbazole	0.120	0.121	0.120	0.151	0.152	0.158	0.160	0.158	0.159	0.031	0.031	0.038	0.041	0.038	0.040
3,5-dinitrotoulene	0.181	0.163	0.181	0.214	0.196	0.210	0.211	0.205	0.215	0.033	0.034	0.029	0.030	0.024	0.034
3-methyl-2-nitronaphthalene	0.131	0.130	0.131	0.164	0.162	0.168	0.170	0.168	0.171	0.033	0.032	0.037	0.039	0.037	0.041
5-nitroquinoline	0.154	0.145	0.154	0.187	0.177	0.186	0.189	0.185	0.191	0.033	0.032	0.033	0.035	0.031	0.038
2,5-dinitrotoulene	0.185	0.165	0.185	0.219	0.200	0.215	0.216	0.209	0.220	0.034	0.035	0.030	0.031	0.024	0.035
1,3,6,8-tetranitronaphthalene	0.209	0.181	0.209	0.242	0.215	0.230	0.233	0.225	0.240	0.033	0.035	0.021	0.024	0.016	0.031
1,3-dinitrobenzene	0.191	0.166	0.191	0.224	0.199	0.219	0.221	0.209	0.225	0.033	0.033	0.028	0.031	0.018	0.035
2-nitrocarbazole	0.130	0.124	0.129	0.161	0.155	0.162	0.165	0.161	0.166	0.031	0.031	0.033	0.036	0.032	0.037
4-nitrocarbazole	0.127	0.122	0.125	0.158	0.152	0.159	0.162	0.159	0.163	0.032	0.031	0.034	0.038	0.034	0.039
2,3,4-trinitrotoulene	0.198	0.168	0.193	0.231	0.201	0.217	0.220	0.210	0.228	0.033	0.033	0.024	0.027	0.017	0.035
1-methyl-2-nitronaphthalene	0.129	0.130	0.129	0.161	0.161	0.166	0.168	0.166	0.170	0.033	0.031	0.038	0.040	0.038	0.041
2,4,6-trinitrotoulene	0.208	0.174	0.208	0.241	0.208	0.226	0.229	0.217	0.238	0.033	0.034	0.018	0.021	0.009	0.030
9-nitroanthracene	0.126	0.121	0.126	0.158	0.154	0.160	0.162	0.160	0.166	0.032	0.033	0.034	0.037	0.034	0.040
1-nitronaphthlene	0.135	0.133	0.135	0.168	0.165	0.172	0.174	0.172	-0.118	0.033	0.033	0.037	0.039	0.037	-0.253
2-nitronaphthlene	0.137	0.135	0.137	0.169	0.166	0.173	0.175	0.173	0.177	0.032	0.031	0.036	0.038	0.036	0.040
2,3,5-trinitrotoulene	0.176	0.152	0.176	0.207	0.209	0.210	0.197	0.189	0.200	0.032	0.057	0.034	0.021	0.013	0.024
2,3,6-trinitrotoulene	0.207	0.149	0.207	0.241	0.210	0.192	0.195	0.186	0.198	0.035	0.061	-0.015	-0.012	-0.020	-0.008
6-nitrobenzo[a]pyrene	0.122	0.118	0.122	0.154	0.151	0.156	0.159	0.157	0.162	0.032	0.033	0.035	0.037	0.035	0.041
1,3,5-trinitrobenzene	0.221	0.183	0.221	0.255	0.216	0.239	0.243	0.226	0.251	0.034	0.034	0.018	0.022	0.005	0.030
1,3-dinitronaphthlene	0.164	0.154	0.164	0.197	0.187	0.195	0.197	0.194	0.201	0.033	0.033	0.031	0.034	0.031	0.037
1,5-dinitronaphthlene	0.163	0.151	0.163	0.196	0.185	0.194	0.196	0.192	0.199	0.034	0.035	0.031	0.033	0.030	0.037
5-nitroacenaphthene	0.127	0.126	0.127	0.159	0.158	0.164	0.165	0.163	0.167	0.032	0.032	0.037	0.038	0.036	0.040
3,4,5-trinitrotoulene	0.198	0.169	0.176	0.232	0.202	0.201	0.221	0.212	0.230	0.034	0.033	0.025	0.046	0.036	0.054
2-nitrofluorene	0.134	0.133	0.134	0.166	0.164	0.170	0.172	0.169	0.174	0.032	0.031	0.036	0.038	0.035	0.040
1,8-dinitronaphthlene	0.159	0.144	0.159	0.191	0.177	0.187	0.189	0.185	0.195	0.032	0.033	0.028	0.030	0.026	0.036
2,4,5-trinitrotoulene	0.175	0.149	0.175	0.207	0.209	0.193	0.196	0.188	0.199	0.032	0.060	0.019	0.021	0.013	0.025
2,7-dinitrofluorene	0.164	0.153	0.164	0.196	0.185	0.193	0.196	0.192	0.198	0.032	0.032	0.030	0.032	0.029	0.035
1-nitrobenzo[e]pyrene	0.122	0.122	0.122	0.154	0.154	0.159	0.161	0.160	0.164	0.032	0.032	0.037	0.039	0.038	0.042
2-nitrophenanthrene	0.133	0.132	0.133	0.165	0.163	0.169	0.171	0.169	0.173	0.032	0.031	0.036	0.038	0.036	0.040
7-nitrofluoranthene	0.133	0.130	0.133	0.165	0.161	0.167	0.169	0.167	0.173	0.032	0.031	0.034	0.036	0.034	0.040
1-nitropyrene	0.128	0.126	0.128	0.160	0.158	0.164	0.166	0.164	0.168	0.032	0.032	0.036	0.038	0.036	0.040
6-nitrochrysene	0.127	0.126	0.127	0.160	0.159	0.164	0.167	0.165	0.168	0.033	0.033	0.037	0.040	0.038	0.041
2,4,7-trinitro-9-fluorenone	0.203	0.176	0.203	0.236	0.210	0.227	0.229	0.219	0.235	0.033	0.034	0.024	0.026	0.016	0.032
2,4,5,7-tetranitro-9-fluorenone	0.220	0.188	0.220	0.254	0.222	0.241	0.243	0.232	0.249	0.034	0.034	0.021	0.024	0.012	0.030
8-nitrofluoranthene	0.115	0.122	0.115	0.146	0.153	0.157	0.159	0.158	0.158	0.031	0.031	0.043	0.044	0.043	0.044
2,7-dinitro-9-fluorenone	0.184	0.164	0.185	0.217	0.196	0.211	0.213	0.206	0.218	0.033	0.033	0.027	0.029	0.021	0.033
2-nitropyrene	0.124	0.124	0.120	0.155	0.156	0.161	0.164	0.162	0.166	0.032	0.032	0.042	0.044	0.043	0.046
1-nitrofluoranthene	0.141	0.134	0.141	0.173	0.165	0.173	0.175	0.173	0.180	0.032	0.032	0.032	0.035	0.032	0.039
2-nitroanthracene	0.128	0.126	0.128	0.159	0.157	0.163	0.166	0.164	0.168	0.031	0.031	0.035	0.038	0.036	0.041
1,3,6,8-tetranitropyrene	0.195	0.172	0.195	0.230	0.208	0.219	0.221	0.216	0.227	0.035	0.036	0.024	0.026	0.021	0.032
3-nitrofluoranthene	0.143	0.135	0.143	0.175	0.167	0.175	0.178	0.175	0.182	0.032	0.032	0.032	0.035	0.032	0.039
1,3,6-trinitropyrene	0.174	0.159	0.174	0.208	0.193	0.202	0.205	0.201	0.209	0.034	0.035	0.028	0.031	0.027	0.035
1,6-dinitropyrene	0.144	0.140	0.144	0.177	0.173	0.180	0.181	0.179	0.185	0.033	0.033	0.036	0.037	0.035	0.041
1,3-dinitropyrene	0.152	0.143	0.152	0.185	0.176	0.184	0.186	0.183	0.189	0.033	0.033	0.032	0.034	0.031	0.037
1,8-dinitropyrene	0.152	0.143	0.148	0.185	0.177	0.184	0.189	0.184	0.190	0.033	0.034	0.037	0.041	0.037	0.042

Table S2e. Same as Table S2a but for chemical hardness descriptor (η).															
Name of Compound	η_{HFX}	η_{B88}	η _{HF}	$\eta_{HFX+LYP}$	η_{BLYP}	η_{B3LYP}	η _{M06}	η _{M06-L}	η _{M06-2X}	$\eta_{\text{CORR}(\text{HFX+LYP})}$	$\eta_{\text{CORR(BLYP)}}$	-η _{COR(B3LYP)}	$\eta_{\text{CORR}(M06)}$	$\eta_{\text{CORR}(M06-L)}$	η _{CORR} (M06-2X)
4-nitrotoulene	0.423	0.114	0.423	0.427	0.118	0.186	0.205	0.139	0.280	0.004	0.004	0.237	0.070	0.061	0.073
2,6-dinitrotoulene	0.429	0.110	0.429	0.430	0.111	0.186	0.207	0.130	0.285	0.001	0.001	0.243	0.064	0.045	0.072
3,4-dinitrotoulene	0.427	0.055	0.304	0.428	0.106	0.093	0.109	0.057	0.168	0.001	0.051	0.211	0.041	0.023	0.048
2,4-dinitrotoulene	0.424	0.110	0.424	0.428	0.114	0.189	0.208	0.133	0.282	0.004	0.004	0.235	0.061	0.042	0.069
2,3-dinitrotoulene	0.425	0.055	0.305	0.426	0.053	0.093	0.109	0.057	0.169	0.001	-0.002	0.212	0.042	0.025	0.049
6-nitroquinoline	0.382	0.104	0.382	0.385	0.103	0.162	0.180	0.120	0.249	0.003	-0.001	0.220	0.073	0.068	0.078
3-nitrocarbazole	0.377	0.094	0.377	0.381	0.096	0.151	0.171	0.111	0.240	0.004	0.002	0.226	0.082	0.076	0.080
3,5-dinitrotoulene	0.412	0.111	0.412	0.417	0.114	0.183	0.201	0.133	0.275	0.005	0.003	0.229	0.061	0.048	0.069
3-methyl-2-nitronaphthalene	0.365	0.092	0.365	0.365	0.093	0.147	0.165	0.106	0.234	0.000	0.001	0.218	0.078	0.075	0.081
5-nitroquinoline	0.383	0.101	0.383	0.385	0.099	0.160	0.178	0.116	0.248	0.002	-0.002	0.223	0.071	0.063	0.075
2,5-dinitrotoulene	0.400	0.102	0.402	0.403	0.103	0.173	0.190	0.121	0.266	0.003	0.001	0.229	0.062	0.047	0.070
1,3,6,8-tetranitronaphthalene	0.376	0.091	0.376	0.378	0.094	0.153	0.171	0.108	0.239	0.002	0.003	0.223	0.047	0.033	0.061
1,3-dinitrobenzene	0.427	0.110	0.427	0.433	0.114	0.195	0.214	0.133	0.289	0.006	0.004	0.232	0.061	0.036	0.070
2-nitrocarbazole	0.353	0.083	0.352	0.355	0.085	0.139	0.157	0.099	0.223	0.002	0.002	0.213	0.071	0.064	0.073
4-nitrocarbazole	0.347	0.079	0.353	0.350	0.080	0.135	0.151	0.093	0.218	0.003	0.001	0.218	0.076	0.069	0.077
2,3,4-trinitrotoulene	0.436	0.109	0.406	0.440	0.109	0.184	0.203	0.128	0.286	0.004	0.000	0.222	0.054	0.033	0.070
1-methyl-2-nitronaphthalene	0.371	0.093	0.371	0.372	0.095	0.150	0.168	0.109	0.238	0.001	0.002	0.221	0.079	0.076	0.082
2,4,6-trinitrotoulene	0.432	0.106	0.432	0.438	0.109	0.183	0.205	0.127	0.286	0.006	0.003	0.249	0.041	0.017	0.059
9-nitroanthracene	0.323	0.074	0.323	0.323	0.073	0.123	0.139	0.084	0.200	0.000	-0.001	0.200	0.074	0.069	0.080
1-nitronaphthlene	0.368	0.093	0.368	0.368	0.094	0.149	0.167	0.108	-0.351	0.000	0.001	0.219	0.077	0.074	-0.506
2-nitronaphthlene	0.364	0.094	0.364	0.367	0.096	0.149	0.167	0.109	0.236	0.003	0.002	0.215	0.076	0.072	0.079
2,3,5-trinitrotoulene	0.297	0.051	0.297	0.298	0.109	0.081	0.104	0.052	0.163	0.001	0.058	0.216	0.042	0.026	0.049
2,3,6-trinitrotoulene	0.413	0.053	0.415	0.414	0.099	0.091	0.107	0.056	0.167	0.001	0.046	0.324	-0.024	-0.040	-0.017
6-nitrobenzo[a]pyrene	0.307	0.069	0.307	0.307	0.069	0.116	0.131	0.079	0.188	0.000	0.000	0.191	0.075	0.070	0.082
1,3,5-trinitrobenzene	0.442	0.109	0.442	0.447	0.112	0.195	0.218	0.131	0.297	0.005	0.003	0.247	0.043	0.011	0.059
1,3-dinitronaphthlene	0.361	0.093	0.361	0.363	0.093	0.147	0.164	0.106	0.232	0.002	0.000	0.214	0.067	0.061	0.074
1,5-dinitronaphthlene	0.369	0.093	0.369	0.370	0.094	0.149	0.167	0.107	0.236	0.001	0.001	0.220	0.067	0.060	0.073
5-nitroacenaphthene	0.356	0.088	0.356	0.356	0.089	0.141	0.158	0.101	0.225	0.000	0.001	0.215	0.077	0.072	0.080
3,4,5-trinitrotoulene	0.428	0.047	0.341	0.429	0.105	0.139	0.191	0.119	0.2/1	0.001	0.058	0.202	0.092	0.073	0.109
2-nitrofluorene	0.360	0.095	0.360	0.364	0.097	0.150	0.167	0.110	0.235	0.004	0.002	0.210	0.075	0.071	0.079
1,8-dinitronaphthlene	0.376	0.098	0.376	0.380	0.101	0.158	0.175	0.115	0.242	0.004	0.003	0.218	0.061	0.052	0.071
2,4,5-trinitrotoulene	0.295	0.050	0.295	0.295	0.100	0.086	0.102	0.049	0.161	0.000	0.050	0.209	0.042	0.027	0.049
	0.359	0.096	0.359	0.303	0.098	0.150	0.167	0.110	0.234	0.004	0.002	0.209	0.064	0.057	0.070
1-nitrobenzolejpyrene	0.328	0.078	0.328	0.330	0.079	0.130	0.140	0.091	0.208	0.002	0.001	0.198	0.078	0.076	0.084
Z-hitrophenanthrene	0.351	0.089	0.351	0.353	0.091	0.143	0.160	0.104	0.227	0.002	0.002	0.208	0.078	0.073	0.080
	0.340	0.087	0.340	0.345	0.089	0.140	0.130	0.101	0.219	0.003	0.002	0.200	0.072	0.009	0.080
	0.310	0.070	0.310	0.320	0.077	0.124	0.139	0.088	0.200	0.002	0.001	0.194	0.070	0.075	0.081
2.4.7 tripitro 0 fluoronono	0.340	0.082	0.340	0.341	0.083	0.134	0.150	0.093	0.213	0.001	0.001	0.200	0.073	0.073	0.083
2,4,7-tillitto-9-indolerione	0.358	0.080	0.358	0.300	0.081	0.143	0.105	0.094	0.225	0.002	0.001	0.213	0.033	0.033	0.003
8-nitrofluoranthene	0.335	0.075	0.335	0.301	0.075	0.147	0.104	0.093	0.225	0.002	0.000	0.212	0.040	0.024	0.000
2 7-dipitro-9-fluorenone	0.347	0.078	0.347	0.345	0.080	0.132	0.150	0.093	0.220	0.002	0.002	0.213	0.009	0.087	0.000
2-nitropyrene	0.337	0.005	0.337	0.301	0.004	0.140	0.105	0.058	0.220	0.004	0.001	0.211	0.038	0.042	0.000
1-nitrofluoranthene	0.321	0.070	0.329	0.322	0.070	0.124	0.140	0.007	0.202	0.001	0.000	0.200	0.000	0.060	0.032
2-nitroanthracene	0.325	0.070	0.325	0.331	0.000	0.125	0.145	0.050	0.200	0.002	0.001	0.200	0.076	0.004	0.078
1 3 6 8-tetranitronyrene	0.313	0.070	0.313	0.317	0.072	0.115	0.133	0.001	0.197	-0.002	0.002	0.198	0.070	0.073	0.061
3-nitrofluoranthene	0.314	0.000	0 328	0.313	0.000	0.110	0.152	0.000	0.152	0.001	0.000	0.158	0.035	0.042	0.003
1 3 6-trinitrony/rene	0.314	0.071	0.314	0.314	0.072	0.118	0.133	0.082	0.193	0.000	0.001	0.196	0.062	0.054	0.070
1.6-dinitropyrene	0.322	0.078	0.322	0.323	0.078	0.125	0.141	0.089	0.202	0.001	0.000	0.197	0.075	0.071	0.081
1.3-dinitropyrene	0.312	0.074	0.312	0.313	0.074	0.120	0.135	0.085	0.194	0.001	0.000	0.192	0.068	0.062	0.075
1,8-dinitropyrene	0.316	0.074	0.319	0.317	0.074	0.120	0.133	0.084	0.196	0.001	0.000	0.199	0.083	0.073	0.084
										1	-			_	

Table S2f. Same as Table S2a but for electrophilicity index descriptor (ω).															
Name of Compound	ω _{HFX}	ω _{B88}	ω _{HF}	$\omega_{HFX+LYP}$	ω_{BLYP}	ω_{B3LYP}	ω_{M06}	$\omega_{\sf M06-L}$	ω _{M06-2X}	$\omega_{\text{CORR}(\text{HFX+LYP})}$	$\omega_{\text{CORR(BLYP)}}$	-ω _{CORR(B3LYP)}	ω _{CORR(M06)}	ωCORR(M06-L)	ω _{CORR(M06-2X)}
4-nitrotoulene	0.027	0.088	0.027	0.039	0.128	0.092	0.085	0.119	0.063	0.128	0.128	0.002	0.009	0.008	0.009
2,6-dinitrotoulene	0.035	0.109	0.035	0.051	0.160	0.112	0.103	0.150	0.078	0.613	0.578	0.002	0.008	0.006	0.009
3,4-dinitrotoulene	0.036	0.148	0.038	0.051	0.165	0.153	0.135	0.234	0.091	0.578	0.035	0.001	0.005	0.003	0.006
2,4-dinitrotoulene	0.039	0.116	0.039	0.053	0.163	0.116	0.108	0.153	0.082	0.136	0.136	0.002	0.008	0.005	0.009
2,3-dinitrotoulene	0.035	0.148	0.037	0.050	0.234	0.153	0.136	0.233	0.091	0.578	-0.225	0.001	0.005	0.003	0.006
6-nitroquinoline	0.030	0.104	0.030	0.044	0.153	0.107	0.099	0.144	0.073	0.182	-0.481	0.003	0.009	0.008	0.010
3-nitrocarbazole	0.019	0.078	0.019	0.030	0.120	0.082	0.075	0.112	0.053	0.120	0.240	0.003	0.010	0.010	0.010
3,5-dinitrotoulene	0.040	0.119	0.040	0.055	0.168	0.120	0.111	0.158	0.084	0.109	0.193	0.002	0.008	0.006	0.009
3-methyl-2-nitronaphthalene	0.023	0.092	0.023	0.037	0.140	0.095	0.087	0.133	0.062	-	0.512	0.003	0.010	0.009	0.010
5-nitroquinoline	0.031	0.103	0.031	0.045	0.157	0.108	0.100	0.147	0.074	0.272	-0.256	0.002	0.009	0.008	0.009
2,5-dinitrotoulene	0.043	0.133	0.043	0.059	0.193	0.133	0.123	0.180	0.091	0.193	0.613	0.002	0.008	0.006	0.009
1,3,6,8-tetranitronaphthalene	0.058	0.179	0.058	0.077	0.246	0.172	0.158	0.235	0.120	0.272	0.204	0.001	0.006	0.004	0.008
1,3-dinitrobenzene	0.042	0.125	0.042	0.058	0.174	0.122	0.114	0.163	0.088	0.091	0.136	0.002	0.008	0.005	0.009
2-nitrocarbazole	0.024	0.092	0.024	0.036	0.140	0.094	0.086	0.131	0.061	0.240	0.240	0.002	0.009	0.008	0.009
4-nitrocarbazole	0.023	0.093	0.022	0.036	0.144	0.093	0.087	0.135	0.061	0.171	0.481	0.003	0.009	0.009	0.010
2,3,4-trinitrotoulene	0.045	0.129	0.046	0.061	0.184	0.128	0.119	0.172	0.091	0.136	-	0.001	0.007	0.004	0.009
1-methyl-2-nitronaphthalene	0.022	0.090	0.022	0.035	0.136	0.092	0.084	0.127	0.060	0.545	0.240	0.003	0.010	0.009	0.010
2,4,6-trinitrotoulene	0.050	0.143	0.050	0.066	0.198	0.139	0.128	0.184	0.099	0.091	0.193	0.001	0.005	0.002	0.007
9-nitroanthracene	0.024	0.099	0.024	0.038	0.161	0.103	0.095	0.152	0.069	-	-0.545	0.003	0.009	0.009	0.010
1-nitronaphthlene	0.025	0.094	0.025	0.038	0.145	0.099	0.091	0.137	-0.020	-	0.545	0.003	0.010	0.009	-0.063
2-nitronaphthlene	0.026	0.097	0.026	0.039	0.144	0.100	0.091	0.137	0.066	0.171	0.240	0.003	0.009	0.009	0.010
2,3,5-trinitrotoulene	0.052	0.225	0.052	0.072	0.199	0.271	0.186	0.340	0.123	0.512	0.028	0.003	0.005	0.003	0.006
2,3,6-trinitrotoulene	0.052	0.208	0.051	0.070	0.222	0.201	0.176	0.313	0.117	0.613	0.040	0.000	-0.003	-0.005	-0.002
6-nitrobenzo[a]pyrene	0.024	0.100	0.024	0.038	0.164	0.105	0.097	0.154	0.070	-	-	0.003	0.009	0.009	0.010
1,3,5-trinitrobenzene	0.055	0.153	0.055	0.072	0.208	0.146	0.135	0.196	0.106	0.116	0.193	0.001	0.005	0.001	0.007
1,3-dinitronaphthlene	0.037	0.127	0.037	0.053	0.187	0.129	0.118	0.177	0.087	0.272	-	0.002	0.008	0.008	0.009
1,5-dinitronaphthlene	0.036	0.122	0.036	0.052	0.182	0.126	0.115	0.173	0.084	0.578	0.613	0.002	0.008	0.007	0.009
5-nitroacenaphthene	0.023	0.090	0.023	0.036	0.139	0.095	0.087	0.131	0.062	-	0.512	0.003	0.010	0.009	0.010
3,4,5-trinitrotoulene	0.046	0.302	0.045	0.062	0.193	0.145	0.128	0.188	0.097	0.578	0.009	0.002	0.011	0.009	0.014
2-nitrofluorene	0.025	0.092	0.025	0.038	0.138	0.096	0.088	0.130	0.064	0.128	0.240	0.003	0.009	0.009	0.010
1,8-dinitronaphthlene	0.034	0.106	0.034	0.048	0.154	0.111	0.102	0.150	0.078	0.128	0.182	0.002	0.008	0.007	0.009
2,4,5-trinitrotoulene	0.052	0.222	0.052	0.072	0.218	0.217	0.188	0.358	0.123	-	0.036	0.001	0.005	0.003	0.006
2,7-dinitrofluorene	0.037	0.122	0.037	0.053	0.175	0.124	0.115	0.168	0.084	0.128	0.256	0.002	0.008	0.007	0.009
1-nitrobenzo[e]pyrene	0.023	0.095	0.023	0.036	0.149	0.097	0.089	0.141	0.065	0.256	0.512	0.003	0.010	0.010	0.011
2-nitrophenanthrene	0.025	0.097	0.025	0.038	0.145	0.099	0.091	0.138	0.065	0.256	0.240	0.003	0.010	0.009	0.010
7-nitrofluoranthene	0.026	0.096	0.026	0.039	0.145	0.100	0.092	0.139	0.068	0.171	0.240	0.003	0.009	0.009	0.010
1-nitropyrene	0.026	0.104	0.026	0.040	0.161	0.108	0.099	0.154	0.071	0.256	0.512	0.003	0.010	0.009	0.010
6-nitrochrysene	0.024	0.097	0.024	0.037	0.151	0.100	0.092	0.142	0.066	0.545	0.545	0.003	0.010	0.009	0.010
2,4,7-trinitro-9-fluorenone	0.058	0.194	0.058	0.077	0.271	0.177	0.161	0.255	0.120	0.272	0.578	0.001	0.007	0.004	0.008
2,4,5,7-tetranitro-9-fluorenone	0.067	0.223	0.067	0.089	0.311	0.197	0.181	0.289	0.135	0.289	-	0.001	0.006	0.003	0.007
8-nitrofluoranthene	0.019	0.095	0.019	0.030	0.146	0.093	0.084	0.135	0.057	0.240	0.240	0.004	0.011	0.011	0.011
2,7-dinitro-9-fluorenone	0.047	0.161	0.048	0.065	0.229	0.152	0.139	0.217	0.104	0.136	0.545	0.002	0.007	0.005	0.008
2-nitropyrene	0.024	0.101	0.022	0.037	0.160	0.105	0.095	0.151	0.068	0.512	-	0.004	0.011	0.011	0.012
1-nitrofluoranthene	0.030	0.113	0.030	0.045	0.170	0.115	0.106	0.165	0.078	0.256	0.512	0.003	0.009	0.008	0.010
2-nitroanthracene	0.026	0.113	0.026	0.040	0.171	0.111	0.102	0.165	0.072	0.240	0.240	0.003	0.010	0.009	0.010
1,3,6,8-tetranitropyrene	0.061	0.213	0.061	0.084	0.312	0.207	0.185	0.294	0.134	-0.613	-	0.001	0.007	0.005	0.008
3-nitrofluoranthene	0.031	0.114	0.031	0.046	0.174	0.120	0.109	0.170	0.080	0.256	-	0.003	0.009	0.008	0.010
1,3,6-trinitropyrene	0.048	0.177	0.048	0.069	0.259	0.173	0.157	0.247	0.113	-	0.613	0.002	0.008	0.007	0.009
1,6-dinitropyrene	0.032	0.126	0.032	0.048	0.192	0.129	0.117	0.182	0.084	0.545	-	0.003	0.009	0.009	0.010
1,3-dinitropyrene	0.037	0.138	0.037	0.054	0.209	0.141	0.128	0.198	0.092	0.545	-	0.003	0.009	0.008	0.009
1,8-dinitropyrene	0.037	0.138	0.034	0.054	0.212	0.141	0.134	0.202	0.092	0.545	-	0.003	0.010	0.009	0.011

Table S3. Compounds in the train	ning set (T) prediction set (P) and excluded set (F) in different types a	f soliting methods employed	ffor TA100 mutaonicity. Excluded compo	inds are either response or sti	metural outliers (determined from Williams r	slor)				
Name of the compound	Activity (log TA100)	Backan as (INV BAR IN) -		Backers of Completion (INV - I VB B		Exchange+Correlation (Meta functiona	Is, M06, M06-L, M06-2X)	Electron-correlation (CORR(HFX+I	.YP), CORR(BLYP),	Electron-correlation (CORR(M06), CC	RR(M06-L), CORR(M06-
Name of the composito	Activity (log 1A100)	Exchange (HFA, B88, HF) o Activity Sampling (Order splitting)	20% candom colitting	Exchange+Correlation (HFX+LYP, B Activity Samoling (Order rolitting)	20% random rolitting	Activity Sampling (Order politing)	20% random rolitting	CORR(BALYP)) me	20% random rolitting	Activity Sampling (Order rolitting)	20% random rolitting
4-pitrotoulepe	-2.10	T	T	T	T	T	T	T	T	T	T
2.6-dinitrotoulene	-1.34	P	Ť	P	Ť	P	Ť	P	Ť	Ť	Ť
3.4-dinitrotoulene	-1.30	T	T	T	T	т	P	т	т	Р	P
2,4-dinitrotoulene	-1.29	P	P	P	т	P	Р	P	т	т	т
2,3-dinitrotoulene	-1.26	т	P	т	Р	т	т	т	P	P	P
6-nitroquinoline	-1.05	P	т	P	т	P	P	P	P	т	P
3-nitrocarbazole	-1.00	т	E	т	т	E	E	т	т	P	т
3,5-dinitrotoulene	-0.72	P	P	P	P	P	т	P	P	т	т
3-methyl-2-nitronaphthalene	-0.70	т	P	т	т	т	т	т	т	P	т
5-nitroquinoline	-0.70	P	T	P	т	P	P	P	P	т	P
2,5-dinitrotoulene	-0.63	т	P	т	т	т	T	T	T	P	T
1,3,6,8-tetranitronaphthalene	-0.52	E	E	E	E	E	E	E	E	E	E
1,3-dinitrobenzene	-0.51	P	P	P	P	P	P	P	T	P	т
2-nitrocarbazole	-0.30	Ť	Р	Ť	т	т	т	Ť	т	Ť	Ť
4-nitrocarbazole	-0.30	P	T	P	т	P	т	P	т	P	T
2,3,4-trinitrotoulene	0.08	Ţ	T	Ť	Ţ	Ţ	P	Ţ	P	Ţ	I
1-metriy-2-nitronaphthalene	U.08	P	T	P	P	P	Ţ	P	Ţ	P	Ţ
2,4,6-trinitrotoulene	0.16	1	P	I	-		P	E	÷	1	÷
9-ntroantnracene	0.26	P		P	1	P		P		P	1
1-ntronaphtniene	0.28		P		1	E	E		P	E	E
2-ntronaphtniene	0.37	2	+	P	-		-	P	÷	P	Ļ
2,3,5-trinicoodene	0.46		-	1	E	-	-	2			
2,3,6-triffic obuiene	0.55	P	E E	P E	5	-		E	E	E	E E
4.3.5 trisitation	0.71	-	с Т	E	E	-	E	E		E	E
1,3,5-trifficoperizene	0.72		-	1			-	E T		E	P
1.5-dinitronaphthlene	0.00	r .		Ť	Ť	, , , , , , , , , , , , , , , , , , ,	+		r r	P	P T
5.otrosceosobibene	0.97		P		Ť			Ť	Ť	, T	÷
3.4.5-tripitrotoulene	1.01	Ť	Ť	Ť	Ť	Ť	Ť	P	P	Ē	Ē
2-pitrofluprepe	1.08	P	Ť	P	Ť	P	Ť	Ť	T	Ť	Ť
1.8-dipitropaphthlepe	1.12	Ť	Ť	Ť	P	Ť	Ť	P	Ť	P	Ť
2.4.5-trinitrotoulene	1.12	P	P	P	Ť	P	P	Ť	Ť	Ť	Ť
2.7-dinitrofluorene	1.27	Ť	Ť	Ť	Ť	Ť	Ť	P	P	P	P
1-nitrobenzo[e]pyrene	1.65	Ē	Ē	Ē	Ē	Ē	Ē	Ť	Ť	Ť	Ť
2-nitrophenanthrene	1.79	P	T	Р	Р	т	Р	Р	т	Р	т
7-nitrofluoranthene	2.09	T	Р	T	T	P	T	т	P	т	Р
1-nitropyrene	2.17	P	т	P	т	т	Р	P	т	P	P
6-nitrochrysene	2.21	T	Р	T	T	P	T	т	т	т	т
2,4,7-trinitro-9-fluorenone	2.27	E	т	E	т	т	т	P	т	P	т
2,4,5,7-tetranitro-9-fluorenone	2.46	E	E	E	E	E	E	т	E	т	E
8-nitrofluoranthene	2.60	P	т	P	т	P	т	P	т	P	P
2,7-dinitro-9-fluorenone	2.69	т	т	т	т	т	т	т	т	т	т
2-nitropyrene	2.87	P	т	P	т	P	т	P	Р	P	т
1-nitrofluoranthene	3.00	т	т	т	Р	т	т	т	т	т	Р
2-nitroanthracene	3.05	P	T	P	т	P	T	P	T	P	т
1,3,6,8-tetranitropyrene	3.18	E	E	E	E	E	E	т	E	т	E
3-nitrofluoranthene	3.31	т	P	т	т	т	т	P	P	P	Р
1,3,6-trinitropyrene	3.87	E	P	P	т	E	т	т	т	т	т
1,6-dinitropyrene	4.09	т	т	т	P	P	т	P	т	P	P
1,3-dinitropyrene	4.63	P	T	P	т	т	P	т	т	т	т
1,8-dinitropyrene	4.74	T	T	T	T	T	T	T	T	T	T
Number of Compunds in Tra	aining Set	23	30	23	36	23	31	24	34	24	31
Number of Compunds in Pr	ediction Set	21	15	22	9	20	13	22	12	21	13
Number of Compunds in Ex	ternal Set	7	6	6	6	8	7	5	5	6	7

^b Name of the compound	of the compound Activity (log TA100) Electron-correlation (CORR(HFX+LYP)) method		X+LYP)) method	^c Name of the compound	Activity (log TA100)	Electron-correlation (CORR/I	SLYP)) method
		Activity Sampling (Order splitting)	30% random splitting			Activity Sampling (Order splitting)	30% random splitting
4-nitrotoulene	-2.10	т	T	4-nitrotoulene	-2.10	T	т
2,6-dinitrotoulene	-1.34	P	P	2,6-dinitrotoulene	-1.34	P	P
3,4-dinitrotoulene	-1.30	т	т	3,4-dinitrotoulene	-1.30	т	т
2,4-dinitrotoulene	-1.29	P	т	2,4-dinitrotoulene	-1.29	P	т
2,3-dinitrotoulene	-1.26	т	P	2,3-dinitrotoulene	-1.26	т	P
6-nitroquinoline	-1.05	P	т	6-nitroquingline	-1.05	E	E
3-nitrocarbazole	-1.00	т	т	3-nitrocarbazole	-1.00	т	т
3,5-dinitrotoulene	-0.72	P	т	3,5-dinitrotoulene	-0.72	P	т
5-nitroquinoline	-0.70	т	P	3-methyl-2-nitronaphthalene	-0.70	т	P
2,5-dinitrotoulene	-0.63	P	т	5-nitroguinoline	-0.70	P	т
1,3,6,8-tetranitronaphthalene	-0.52	E	E	2,5-dinitrotoulene	-0.63	т	E
1,3-dinitrobenzene	-0.51	т	т	1,3,6,8-tetranitronaphthalene	-0.52	E	E
2-nitrocarbazole	-0.30	P	P	1,3-dinitrobenzene	-0.51	P	P
4-nitrocarbazole	-0.30	т	т	2-nitrocarbazole	-0.30	т	т
2,3,4-trinitrotoulene	0.08	P	т	4-nitrocarbazole	-0.30	P	т
1-methyl-2-nitronaphthalene	0.08	т	т	1-methyl-2-nitronaphthalene	0.08	т	т
2,4,6-trinitrotoulene	0.16	P	P	2,4,6-trinitrotoulene	0.16	P	P
2-nitronaphthiene	0.37	т	т	9-nitroanthracene	0.26	E	E
2,3,5-trinitrotoulene	0.46	P	т	1-nitronaphthlene	0.28	т	т
2.3.6-trinitrotoulene	0.55	т	т	2-nitronaphthlene	0.37	Р	т
1.3.5-trinitrobenzene	0.72	Р	Р	2.3.5-trinitrotoulene	0.46	т	Р
1.3-dinitronaphthlene	0.86	т	т	2.3.6-trinitrotoulene	0.55	Р	т
1.5-dinitronaphthlene	0.91	Р	T	1.3.5-trinitrobenzene	0.72	т	т
3.4.5-trinitrotoulene	1.01	т	т	1.5-dinitronaphthlene	0.91	Р	т
2-nitrofluorene	1.08	Р	Р	5-nitroacenaphthene	0.97	т	Р
1.8-dinitronanhthiene	1.12	т	т	3.4.5-trinitrotoviene	1.01	P	т
2.7-dinitrofluorene	1.27	P	Ť	2-nitrofluorene	1.08	Ť	Ť
1-nitrobenzo/elowtene	1.65	т	т	1.8.dinitronantithiene	1.12	P	т
2-nitrophenanthrene	1.79	Р	P	2.4.5-trinitrotoulene	1.12	т	Р
7-nitrofluoranthene	2.09	т	т	2.7-dinitrofluorene	1.27	Р	т
1-nitrorwrene	2 17	P	т	1-nitrohenzolelnvrene	1.65	T	т
6-nitrochrysene	2.21	Ť	Ť	2-nitrophenanthrene	1.79	P	Ť
2.4.7.trinitro-9.fluorencoe	2 27	P	P	7.nitrofuoranthene	2.09	T	P
2.4.5.7-tetranitro-9-fluorenone	2.46	Ē	Ē	1-nitropyrene	2.17	P	Ť
8-nitrofluoranthene	2.60	т	т	6-nitrochrysene	2.21	т	т
2.7.dinitro-9.funcenone	2.69	P	т	2.4.7.trinitm-9.funrenone	2.27	P	т
2-nitropyrene	2.87	Ť	P	8-nitrofluoranthene	2.60	Ť	P
1-nitrofuncanthene	3.00	P	т	2.7.dinitro-9.fluorenone	2.69	P	т
2-nitroanthracene	3.05	Ť	Ť	1-nitrofluoranthene	3.00	Ť	Ť
1 3 6 8 tetranitronyrene	3.18	F	F	2.nitmanthracene	3.05	P	P
3-nitrofluoranthene	3.31	P	P	1.3.6-trinitropyrene	3.87	Ť	Ť
1 6-disitronymene	4.09	Ť	T	Number of Compunds in Training Se	t	20	26
1 3 dinitropyrene	4.63	P	P	Number of Compunds in Prediction	Set	18	11
1 8-dinitropyrene	4.00	Ť	Ť	Number of Compunds in External Se	et.	3	4
Number of Compunds in Tr	aining Sat	31	29	-			
Number of Computed in Da	adiation Pat	21	29				
Number of Computer in Ex	ternal Set	20	2				
Humber of Companies in Ex	terman det	3	3				

Spliting is performed forcingh (SABINS software, Ber[54]). N Chickes, E. Page, S. Kovatch, S. Cassada, P. Gamutica, (SAB Res. Unit in Environ Chem and Ecoton University of Insubrit, Varee, Italy, 100a set excluding the components' with and finded decouplikity value (-) for COMPRETATION TO Provide International Table 25.0. This net excluding the components' with and finded excluding value (-) for COMPRETATION (COMPRETATION TO Provide International Table 25.0.

Table S4. Compounds in the training set (T), prediction set (P) and excluded set (E) in different types of splitting methods employed" for TA98 managenicity. Excluded compounds are either response or structural outliers (determined from Williams plut).

	Activity (log TA98)	Exchange only (HFX, B8	8, HF) methods	Exchange+Correlation (HFX+I mothode	YP, BLYP, B3LYP)	Exchange+Correlation (Meta fu	nctionals, M06, M06-L,	Electron-correlation (CORR(HFX+I	.YP), CORR(BLYP),	Electron-correlation (CORR(M CORP(M06.2X)) m	6), CORR(M06-L), atheds
		Activity Sampling (Order splittin	g) 30% random splitting	Activity Sampling (Order splitting) 30% random splitting	Activity Sampling (Order splittin	g) 30% random splitting	Activity Sampling (Order splitting)	30% random splitting	Activity Sampling (Order splitting)	30% random splittin
1-methyl-2-nitronaphthalene	-0.70	T	т	T	T	Т	T	T	T	т	т
1-nitronaphthlene	-0.61	т	P	P	P	E	E	P	т	E	E
2-nitronaphthlene	-0.30	P	т	т	т	т	P	т	P	т	P
, 3-dinitronaphthlene	-0.05	т	т	т	т	P	т	P	P	E	т
,3-dinitrobenzene	0.03	E	E	E	E	E	E	E	т	E	E
,5-dinitronaphthlene	0.52	т	P	P	P	P	P	т	т	P	т
,8-dinitronaphthlene	0.90	P	т	т	т	т	т	E	т	т	т
eneroutortin-5	1.43	P	т	т	т	P	т	P	т	P	т
-nitrophenanthrene	2.11	т	P	P	т	т	т	т	т	т	P
-nitrofluoranthene	2.74	т	т	т	т	Р	P	Р	т	P	Р
-nitropyrene	2.78	P	т	т	т	т	т	т	P	т	т
enitroanthracene	2.95	Р	Р	Р	Р	Р	т	E	T	Р	т
-nitropyrene	3.35	т	т	т	т	т	т	т	т	т	т
1 3 6 8 detracitrocycene	4 99	F	F	F	F	F	F	F	F	F	F
1.3.6.trinitmovrene	4 99	Ť	F	F	, i i i i i i i i i i i i i i i i i i i	F	Ť	F	F	F	F
3 dinitrorymoe	5.04	P	÷	Ŧ	Ŧ	Ŧ	P	P	P	Ŧ	P
6 dialtraction	6.06	÷				P	- -	÷	т. т		T
1.8 dinitrory tene	5.39	÷	Ť	Ť	Ť	Ť	Ť	÷	Ť	Ť	Ť
lumber of Compunds in F lumber of Compunds in E	Prediction Set External Set	6 2	5	5 3	4 3	6	4 3	5 5	4	5	4
^d Name of the compound	Activity (log TA98)-	Electron-correlation (CORR(HFX+LYP)) method	* Name of the compound	Activity (log TA98)	Electron-correlation (COR	R(BLYP)) method				
		Activity Sampling (Order splittin	ig) 30% random solitting			Activity Sampling (Order splittin	a) DM/ considers antitudes.				
I-methyl-2-nitronaphthalene	-0.70	T					g) 30% fandom spinning				
			т	1-methyl-2-nitronaphthalene	-0.70	т	g) 30% random spinning. T				
2-nitronaphthlene	-0.30	Ť	T	1-methyl-2-nitronaphthalene 1-nitronaphthiene	-0.70 -0.61	T T	g <u>i son randdin spiraing</u> T T				
2-nitronaphthlene I, 3-dinitronaphthlene	-0.30 -0.05	T	T T T	1-methyl-2-nitronaphthalene 1-nitronaphthiene 2-nitronaphthiene	+0.70 +0.61 +0.30	T T P	<u>д) 30% нановні зрінинд</u> Т Т Т				
-nitronaphthlene ,3-dinitronaphthlene ,3-dinitrobenzene	-0.30 -0.05 0.03	T P T	T T P	1-methyl-2-nitronaphthalene 1-nitronaphthiene 2-nitronaphthiene 1,3-dinitrobenzene	-0.70 -0.61 -0.30 0.03	T T T	T T T P				
-nitronaphthiene ,3-dinitronaphthiene ,3-dinitrobenzene ,5-dinitronaphthiene	-0.30 -0.05 0.03 0.52	T P T P	T T P T	1-methyl-2-nitronaphthalene 1-nitronaphthlene 2-nitronaphthlene 1,3-dinitrobenzene 1,5-dinitronaphthlene	-0.70 -0.61 -0.30 0.03 0.52	Т Т Т Р	T T T P P				
-nitronaphthiene ,3-dinitronaphthiene ,3-dinitrobenzene ,5-dinitronaphthiene ,8-dinitronaphthiene	-0.30 -0.05 0.03 0.52 0.90	T P T T	T T P T T	1-methyl-2-eitronaphthalene 1-eitronaphthlene 2-eitronaphthlene 1,3-dinktoenzene 1,5-dinktonaphthlene 1,8-dinktonaphthlene	-0.70 -0.61 -0.30 0.03 0.52 0.90	Т Р Р Т	g <u>, son handon spinong</u> T T P T				
nitronaphthlene ,3-dinitronaphthlene ,3-dinitrobenzene ,5-dinitronaphthlene ,8-dinitronaphthlene initrofluorene	-0.30 -0.05 0.03 0.52 0.90 1.43	T P T P T	T T P T T T	1-methyl-2-nitronaphthalene 1-nitronaphthiene 2-nitronaphthiene 1,3-dinitronaphthiene 1,8-dinitronaphthiene 2-nitrofluorene	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43	Т 9 7 7 9	T T T P P T T				
-nitronaphthiene ,3-dinitronaphthiene ,3-dinitronaphthiene ,8-dinitronaphthiene -nitroflucrene -nitrophenanthrene	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11	Т Р Т Р Т	Т Т Р Т Т Т Р	1-methyl-2-nitronaphthalene 1-nitronaphthiene 1,3-dinitroberuzene 1,5-dinitronaphthiene 2-nitrophanghthiene 2-nitrophananthrene	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.11	Т 9 9 9 7 7 7	<u>ду 30% Ланосин зритонд</u> Т Т Р Р Т Т Р				
-nitronaphthiene ,3-dinitrobanzene ,5-dinitrobanzene ,5-dinitronaphthiene enitrofluorene -nitrofluorene -nitrofluorene -nitrofluorenthene	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74	т Р Т Р Т Р	Т Т Р Т Т Т Т	1-methyl-2-nitronapithlaiene 1-nitronapithliene 1.3-dinitrobenzene 1.5-dinitrobenzene 1.5-dinitronapithliene 2-nitrofluorene 2-nitrofluorene 1-nitrofluorenthene	-0.70 -0.61 -0.30 0.52 0.90 1.43 2.11 2.74	T P T P T P	y sov random spirovy T T P T T T P P				
-nitronaphthlene 3-dinitronaphthlene 5-dinitronaphthlene 8-dinitronaphthlene -nitrolucene -nitrolucene -nitrolucenthene -nitrolucenthene	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74 2.78	Т Р Т Р Т Р Т Т	Т Т Р Т Т Т Т Т	1-methyl-2-oitronaphthaine 1-intronaphthine 2-nitronaphthine 1,3-dinkrobenzene 1,3-dinkronaphthine 1,8-dinkronaphthine 2-nitroghenanthrene 1-nitroghenanthrene 1-nitrognene	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.11 2.74 2.78	Т Р Т Р Т Р Т Т	g) sov random gameng T P P T T P P T T				
entronaphthlene (,3-dinitronaphthlene (,5-dinitronaphthlene 8-dinitronaphthlene 8-dinitronaphthlene entrophenanthrene Entrophenanthrene I-nitrophyrene -nitrofuyrene -nitrophyrene	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.95	Т Р Т Р Т Р Т Р	Т Т Т Т Т Т Т Т	1-methyl-2-oitronaphthiane 1-itronaphthiane 2-eitronaphthiane 1,3-dintrobarcene 1,3-dintrobarcene 1,8-dintronaphthiane 2-eitrofluorene 2-eitrofluorene 2-eitrofluorene 1-eitrofluoranthiane 1-eitrofluoranthiane	-0.70 -0.61 -0.30 0.52 0.90 1.43 2.11 2.74 2.78 2.95	Т Р Р Р Т Р Т Р	T T T P P T T P T T T				
-nitronaphthlene 3-dinitronaphthlene 5-dinitrobenzene 5-dinitronaphthlene -nitrofuzene -nitrofuzene -nitrofuzenthene -nitrofuzenthene -nitropyrene -nitropyrene	-0.30 -0.05 -0.03 -0.52 -0.90 -1.43 -2.11 -2.74 -2.78 -2.96 -3.35	Т Р Т Р Т Р Т Р Т	Т Т Т Т Т Т Т Т Т	1-methyl-2-aitronaphthaine 1-aitronaphthane 2-aitronaphthane 1,5-aitriconaphthane 1,5-aitriconaphthane 2-aitrophenanthene 1-aitrophenanthene 1-aitrophene 2-aitrophenanthene 1-aitrophene 2-aitronanthracene 1-aitropyrene	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.95 4.99	Т Р Т Р Т Р Т Р Т	а) 307 Лансан данала Т Р Р Т Т Т Т Т Т				
-nitronsphthlene 3-dinitrosphthlene 5-dinitrosphthlene 5-dinitrosphthlene -sitrofucerene -nitrofucerene -nitrophranethrene -nitrophranethrene -nitropyrene -nitropyrene -nitropyrene	-0.30 -0.05 -0.03 -0.52 -0.90 1.43 2.11 2.74 2.78 2.95 3.35 4.99	Р Р Т Р Т Р Т Е	Т Т Т Т Т Т Т Т Е	1-methy-2-ntronapthalene 1-intronapthilene 2-intronapthilene 1.5-dintronapthilene 2.5-dintronapthilene 2-intronapthilene 2-intronapthilene 2-intronapthilene 2-intronapthilene 1-intronaptene 1-intronaptene 2-intronaptene 1-intronaptene 1-intronaptene 1-intronaptene 1-intronaptene 1-intronaptene I-intr	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.95 4.99 Set	Т Р Т Р Т Р Т 7	y Joy Frender grinning T T P P T T T T T T S				
-nitrosphthine 3-dinitrosphthine 3-dinitrosphthine 5-dinitrosphthine -sitrotucene -nitrophanarhnene -nitrophanarhnene -nitrophanarhnene -nitrophanarhnene -nitrophane -nitrophane -nitrophane -nitrophane -nitrophane -nitrophane -nitrophane -nitrophane	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.95 3.35 4.99 5.04	Т Р Т Р Р Т Е Т	Т Т Р Т Т Т Р Е Т	1-methyl-antronaphthalene 1-intronaphthalene 2-intronaphthalene 1.5 dintronaphthalene 1.5 dintronaphthalene 2-intropharamthalene 2-intropharamthalene 1-introphrene 2-intropharamthalene 2-intropharam	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.95 4.99 Set n 5st	T P T P T P T 7 5	у 30-7 линой турной Т Т Р Р Т Т Т Т Т Т Т 4				
-nitrophthine 3-diritrophthine 3-diritrophthine 5-diritrophthine 5-diritrophthine -nitrofucene -nitrofucene -nitrophthine -nitrophthine -nitrophthine -nitrophthine -nitrophthine -nitrophthine 3-diritrophthine 3-diritrophthine	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.95 3.35 4.99 5.04 5.06	Т Р Т Р Т Р Т Т Е Т Р	Т Т Р Т Т Т Р Е Т Р Е Т Р	1-methyl-2-ntronaptithalene 1-methyl-2-ntronaptithalene 2-ntronaptithane 1-disronaptithane 1-5-disronaptithane 1-5-disronaptithane 2-ntronaptithane 1-2-tronaptithane 1-2-tr	-0.70 -0.61 -0.30 0.52 0.90 1.43 2.11 2.74 2.78 2.95 4.99 Set n Set Set	Т Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р	у 304 ландат улиану Т Р Р Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т С				
I-itionaphthione 3. dinitronaphthione 3. dinitronaphthione 5. dinitronaphthione 4. dinitronaphthione 4. dinitronaphthione 4. distantante 4. distanti 4. d	-0.30 -0.05 0.03 0.52 0.50 1.43 2.11 2.74 2.78 2.95 3.35 3.35 3.35 4.99 5.04 5.06 5.39	Т Р Т Р Т Р Т Р Т Е Т Р Т	Т Т Т Р Т Т Т Р Е Т Р Е Т Р Е Т	I-methy-2-ntronaptituleme I-methy-2-ntronaptituleme I-ntronaptituleme I-ntronaptituleme I-ntronaptituleme I-ntronaptituleme I-ntronaptituleme I-distronaptituleme I-distronaptituleme I-distronaptituleme I-attropingeneme I-ntropingeneme I-ntropingeneme Number of Compunds in Prainling	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.78 2.95 4.99 Set n Set Set	Т Р Р Р Р Р Р 7 7 0	у 304 ландал улануу Т Т Р Р Т Т Т Т Т Т Т Т 8 8 4 0				
-nitrosphhlane 3-disitrosphhlane 3-disitrosphthane 3-disitrosphthane 4-distrosphthane -nitrospha	-0.30 -0.05 0.03 0.52 0.52 0.52 1.43 2.11 2.74 2.75 3.35 3.25 3.35 4.99 5.04 5.06 5.39	Т Р Т Р Т Р Т Р Т Е Т Р Т Е Т Р Т	Т Т Т Т Т Т Т Т Р Е Т Р Т	1-methy-2-ntronaptituleme 1-methy-2-ntronaptituleme 2-ntronaptituleme 2-ntronaptituleme 2-ntronaptituleme 1-sintronaptituleme 1-sintronaptituleme 2-ntronaptituleme 2-ntronaptituleme 2-ntronaptituleme 1-ntronpurse 2-ntronaptituleme 1.3.6.trintroneme 1.3.6.trintroneme Number of Compunds in Prediction Number of Compunds in External	-0.70 -0.61 -0.30 0.52 0.90 1.43 2.74 2.78 2.95 4.99 Set n Set Set	Т Р Т Р Т Р Т 7 5 0	y Joy random gammy T F P P T T T T T T T S 4 O				
I-stronghthione 3. divitronghthione 3. divitronghthione 4. divitronghthione 4. divitronghthione 4. divitronghthione 4-sitoghenanthrene 4-sitoghenanthrene 4-sitoghenanthrene 4-sitoghynene 3. divitrogyrene 3. divitrogyrene 8. divitrogyrene 8. divitrogyrene 8. divitrogyrene 8. divitrogyrene	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74 2.76 2.76 2.35 3.35 4.99 5.04 5.06 5.39 7raining Set	Т Р Т Р Т Р Т Р Т Р Т Е Т Р Т Е Т Р Т Р	Т Т Т Р Т Т Т Р Е Т Р Е Т Т	Inethy 2 attrosphthate Inethy 2 attrosphthate Attrosphthate Attrosphthate Inethy 2 attrosphthate Inethy 2 attrosphthate Inethy 2 attrosphthe	-0.70 -0.61 -0.30 0.52 0.52 0.50 1.43 2.13 2.74 2.75 2.76 2.76 5 5 4.59 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Т Р Т Р Т Р Т Р Т Р 7 9 7 9 0	у 394 линой финосу Т Т Р Р Т Т Т Т Т Т Т Т 4 0				
2-distonghibiline 3. Jointronghibiline 3. Jointronghibiline 6. Jointronghibiline 2-distonghibiline 2-distonghibiline 2-distonghibiline 2-distonghibiline 3. 8.6 Automitrograme 1. 3.6 Automitrograme 1. 6. Jointrograme 1. 6. Jointrograme 1. 6. Jointrograme 1. 6. Jointrograme	-0.30 -0.05 0.03 0.52 0.90 1.43 2.11 2.74 2.78 2.78 3.35 5.04 5.04 5.04 5.06 5.39 7raining Set Yrediction Set	Т Р Т Р Т Р Т Е Т Р Т Е Т Р Т 9 6	T T T P T T T P E T P T 11 4	Instity 2-bitrosofthalane Instity 2-bitrosofthalane Instity 2-bitrosofthalane Institution	-0.70 -0.61 -0.30 0.03 0.52 0.90 1.43 2.74 2.78 2.95 2.95 2.95 Set s fst Set	Τ Τ Ρ Τ Ρ Τ Ρ Τ Ρ Τ Ρ Τ Ρ Τ Ο Ο	у 30.7 на				

Splitning is performed through (SARENS enhance, Red [54], N. Chiere, E. Pay, S. Koratch, S. Canazi, P. Ganazia, (SAR Rus. Unit in Environ Chem and Econst University of Enotytic, Varout, Italy, 2012 (http://www.qar.it). dData are candidate througeness with and and and encophilitizity value () for COMBRUTY (not responsing Information Table SC). This are candidate througeness with and and and encophilitizity (COMBRUTY) (not responsing Information Table SC).

Table S5. Comparison of the key internal and external validation parameters for the models based on the total energy (*E*) and energy of HOMO (E_{HOMO}) computed with the Exchange (X) only, Exchange + Correlation (X+C) methods, and with the effect of electron-correlation (CORR) of the descriptors, for modeling TA98 mutagenicity of nitrated-PAHs.

Model S.No.	Method	Descriptor Employed	Splitting Employed	R^2	$Q^2_{ m LOO}$	$R^2 - Q^2_{LOO}$	$Q^2_{\rm LMO}$	Q ² _{F3}	CCC _{EXT}
			Exc	hange (X) Or	dy				
1.	DFT/B88	$E_{ m B88}$, $E_{ m B88}^{ m HOMO}$	activity sampling	0.948	0.862	0.085	0.681	0.943	0.955
2.	DFT/HFX	$E_{ m HFX}$, $E_{ m HFX}^{ m HOMO}$	activity sampling	0.953	0.876	0.077	0.570	0.937	0.951
			Exchange	+ Correlatio	n (X+C)				
3.	HFX + LYP	$E_{ m HFX\ +\ LYP}$, $E_{ m HFX\ +\ LYP}^{ m HOMO}$	activity sampling	0.941	0.885	0.056	0.699	0.984	0.994
4.	BLYP	$E_{ m BLYP}$, $E_{ m BLYP}^{ m HOMO}$	activity sampling	0.938	0.874	0.064	0.721	0.986	0.994
5.	B3LYP	$E_{ m B3LYP}$, $E_{ m B3LYP}^{ m HOMO}$	activity sampling	0.940	0.882	0.058	0.743	0.987	0.995
6.	M06	$E_{ m M06}$, $E_{ m M06}^{ m HOMO}$	activity sampling	0.963	0.912	0.051	0.244	0.910	0.922
7.	M06-L	$E_{ m M06-L}$, $E_{ m M06-L}^{ m HOMO}$	activity sampling	0.960	0.901	0.059	0.333	0.907	0.919
8.	M06-2X	$E_{ m M06-2X}$, $E_{ m M06-2X}^{ m HOMO}$	activity sampling	0.964	0.915	0.049	0.295	0.904	0.915
			Electron-Co	orrelation (CO	ORR) only				
9.	CORR(HFX+LYP)	$E_{\text{CORR(HFX+LYP)}}, E_{\text{CORR(HFX+LYP)}}^{\text{HOMO}}$	activity sampling	0.973	0.926	0.047	0.327	0.919	0.957
10.	CORR(BLYP)	$E_{\text{CORR(BLYP)}}$, $E_{\text{CORR(BLYP)}}^{\text{HOMO}}$	activity sampling	0.968	0.899	0.069	0.244	0.892	0.943
11.	CORR(B3LYP)	$E_{\text{CORR(B3LYP)}}$, $E_{\text{CORR(B3LYP)}}^{\text{HOMO}}$	activity sampling	0.975	0.942	0.033	0.486	0.950	0.971
12.	CORR(M06)	$E_{\mathrm{CORR}(\mathrm{M06})}$, $E_{\mathrm{CORR}(\mathrm{M06})}^{\mathrm{HOM0}}$	activity sampling	0.978	0.956	0.023	0.604	0.947	0.948
13.	CORR(M06-L)	$E_{\text{CORR}(M06-L)}$, $E_{\text{CORR}(M06-L)}^{\text{HOMO}}$	activity sampling	0.978	0.954	0.024	0.560	0.950	0.952
14.	CORR(M06-2X)	$E_{\text{CORR}(\text{M06-2X})}$, $E_{\text{CORR}(\text{M06-2X})}^{\text{HOMO}}$	activity sampling	0.981	0.961	0.020	0.670	0.946	0.951

Model S.No.	Method	Descriptor Employed	Splitting Employed	R^2	$Q^2_{ m LOO}$	$R^2 - Q^2_{LOO}$	Q^2 LMO	$Q_{\rm F3}^2$	CCC _{EXT}
			Exc	change (X) On	ly				
1.	DFT/B88	$E_{ m B88}$, $E_{ m B88}^{ m LUMO}$	activity sampling	0.941	0.861	0.080	0.694	0.858	0.878
2.	DFT/HFX	$E_{ m HFX}$, $E_{ m HFX}^{ m LUMO}$	activity sampling	0.860	0.660	0.200	0.120	0.733	0.762
			Exchange	e + Correlation	n (X+C)				
3.	HFX + LYP	$E_{ m HFX\ +\ LYP}$, $E_{ m HFX\ +\ LYP}^{ m LUMO}$	activity sampling	0.886	0.711	0.175	0.542	0.588	0.872
4.	BLYP	$E_{ m BLYP}$, $E_{ m BLYP}^{ m LUMO}$	activity sampling	0.927	0.823	0.104	-	0.836	0.925
5.	B3LYP	$E_{ m B3LYP}$, $E_{ m B3LYP}^{ m LUMO}$	activity sampling	0.918	0.786	0.132	0.563	0.813	0.915
6.	M06	$E_{ m M06}$, $E_{ m M06}^{ m LUMO}$	activity sampling	0.793	0.556	0.237	0.083	0.912	0.959
7.	M06-L	$E_{ m M06-L}$, $E_{ m M06-L}^{ m LUMO}$	activity sampling	0.836	0.679	0.157	0.339	0.905	0.958
8.	M06-2X	$E_{ m M06-2X}$, $E_{ m M06-2X}^{ m LUMO}$	activity sampling	0.926	0.607	0.319	-0.951	-	-
			Electron-Co	orrelation (CC	ORR) only				
9.	CORR(HFX+LYP)	$E_{\text{CORR}(\text{HFX+LYP})}$, $E_{\text{CORR}(\text{HFX+LYP})}^{\text{LUMO}}$	activity sampling	0.992	0.986	0.006	0.667	0.839	0.924
10.	CORR(BLYP)	$E_{\text{CORR(BLYP)}}$, $E_{\text{CORR(BLYP)}}^{\text{LUMO}}$	activity sampling	0.910	0.837	0.073	0.606	0.864	0.945
11.	CORR(B3LYP)	$E_{ m CORR(B3LYP)}$, $E_{ m CORR(B3LYP)}^{ m LUMO}$	activity sampling	0.929	0.851	0.078	-0.237	-	-
12.	CORR(M06)	$E_{\text{CORR}(\text{M06})}$, $E_{\text{CORR}(\text{M06})}^{\text{LUMO}}$	activity sampling	0.945	0.881	0.065	-0.133	-	-
13.	CORR(M06-L)	$E_{\text{CORR}(\text{M06-L})}$, $E_{\text{CORR}(\text{M06-L})}^{\text{LUMO}}$	activity sampling	0.948	0.873	0.074	0.136	0.822	0.831
14.	CORR(M06-2X)	$E_{\mathrm{CORR}(\mathrm{M06-2X})}$, $E_{\mathrm{CORR}(\mathrm{M06-2X})}^{\mathrm{LUMO}}$	activity sampling	0.951	0.882	0.068	-0.032	-	-

Table S6. Same as **Table S5** but for the models based on the total electronic energy (E) and energy of the LUMO (E_{LUMO}).

Model S.No.	Method	Descriptor Employed	Splitting Employed	R^2	Q^2 LOO	$R^2 - Q^2_{LOO}$	$Q^2_{\rm LMO}$	$Q_{\rm F3}^2$	CCC _{EXT}
			Ex	change (X) On	ıly				
1.	DFT/B88	$E_{ m B88}$, $\chi_{ m B88}$	activity sampling	0.951	0.873	0.078	0.557	0.945	0.954
2.	DFT/HFX	$E_{ m HFX}$, $\chi_{ m HFX}$	activity sampling	0.938	0.849	0.089	0.607	0.940	0.950
			Exchang	ge + Correlatio	n (X+C)				
3.	HFX + LYP	$E_{ m HFX\ +\ LYP}$, $\chi_{ m HFX\ +\ LYP}$	activity sampling	0.944	0.882	0.062	0.778	0.928	0.974
4.	BLYP	$E_{ m BLYP}$, $\chi_{ m BLYP}$	activity sampling	0.945	0.883	0.062	0.715	0.952	0.982
5.	B3LYP	$E_{ m B3LYP}$, $\chi_{ m B3LYP}$	activity sampling	0.918	0.786	0.132	0.563	0.813	0.915
6.	M06	$E_{ m M06}$, $\chi_{ m M06}$	activity sampling	0.951	0.865	0.086	-	-	-
7.	M06-L	$E_{ m M06-l}$, $\chi_{ m M06-L}$	activity sampling	0.913	0.803	0.110	0.425	0.932	0.971
8.	M06-2X	$E_{\rm M06-2x}$, $\chi_{\rm M06-2X}$	activity sampling	0.909	0.791	0.119	0.454	0.945	0.976
			Electron-C	Correlation (CO	ORR) only				
9.	CORR(HFX+LYP)	$E_{\text{CORR(HFX+LYP)}}$, $\chi_{\text{CORR(HFX+LYP)}}$	activity sampling	0.992	0.986	0.006	0.667	0.839	0.924
10.	CORR(BLYP)	$E_{\rm CORR(BLYP)}$, $\chi_{\rm CORR(BLYP)}$	activity sampling	0.970	0.902	0.068	0.257	0.897	0.948
11.	CORR(B3LYP)	$E_{\text{CORR}(B3LYP)}$, $\chi_{\text{CORR}(B3LYP)}$	activity sampling	0.960	0.892	0.068	0.079	0.923	0.951
12.	CORR(M06)	$E_{\mathrm{CORR}(\mathrm{M06})}$, $\chi_{\mathrm{CORR}(\mathrm{M06})}$	activity sampling	0.967	0.923	0.045	0.274	0.878	0.883
13.	CORR(M06-L)	$E_{\text{CORR}(\text{M06-L})}, \chi_{\text{CORR}(\text{M06-L})}$	activity sampling	0.971	0.934	0.037	0.344	0.884	0.891
14.	CORR(M06-2X)	$E_{\text{CORR}(\text{M06-2X})}, \chi_{\text{CORR}(\text{M06-2X})}$	activity sampling	0.969	0.931	0.038	0.442	0.889	0.897

Model S.No.	Method	Descriptor Employed	Splitting Employed	R^2	$Q^2_{\rm LOO}$	$R^2 - Q^2_{LOO}$	Q^2 LMO	$Q_{\rm F3}^2$	CCC _{EXT}
			1	Exchange (X) C	Dnly				
1.	DFT/B88	$E_{ m B88}$, $\eta_{ m B88}$	activity sampling	0.909	0.786	0.124	0.491	0.746	0.847
2.	DFT/HFX	$E_{ m HFX}$, $\eta_{ m HFX}$	activity sampling	0.941	0.865	0.076	0.655	0.867	0.893
			Excha	nge + Correlati	ion (X+C)				
3.	HFX + LYP	$E_{ m HFX\ +\ LYP}$, $\eta_{ m HFX\ +\ LYP}$	activity sampling	0.908	0.850	0.058	0.669	0.972	0.988
4.	BLYP	$E_{ m BLYP}$, $\eta_{ m BLYP}$	activity sampling	0.884	0.825	0.059	0.451	0.933	0.969
5.	B3LYP	$E_{ m B3LYP}$, $\eta_{ m B3LYP}$	activity sampling	0.895	0.838	0.057	0.476	0.952	0.979
6.	M06	$E_{ m M06}$, $\eta_{ m M06}$	activity sampling	0.856	0.698	0.158	0.464	0.962	0.980
7.	M06-L	$E_{ m M06-l},\eta_{ m M06-L}$	activity sampling	0.836	0.655	0.182	0.374	0.935	0.965
8.	M06-2X	$E_{ m M06-2x}$, $\eta_{ m M06-2X}$	activity sampling	0.860	0.705	0.155	0.355	0.975	0.988
			Electron	-Correlation (C	CORR) only				
9.	CORR(HFX+LYP)	$E_{\mathrm{CORR(HFX+LYP)}}$, $\eta_{\mathrm{CORR(HFX+LYP)}}$	activity sampling	0.904	0.842	0.062	0.542	0.807	0.922
10.	CORR(BLYP)	$E_{\mathrm{CORR(BLYP)}}$, $\eta_{\mathrm{CORR(BLYP)}}$	activity sampling	0.945	0.842	0.103	-0.177	-	-
11.	CORR(B3LYP)	$E_{\text{CORR(B3LYP)}}, \eta_{\text{CORR(B3LYP)}}$	activity sampling	0.928	0.842	0.086	0.690	0.766	0.908
12.	CORR(M06)	$E_{\mathrm{CORR}(\mathrm{M06})}$, $\eta_{\mathrm{CORR}(\mathrm{M06})}$	activity sampling	0.968	0.926	0.043	0.408	0.874	0.880
13.	CORR(M06-L)	$E_{\mathrm{CORR(M06-L)}}$, $\eta_{\mathrm{CORR(M06-L)}}$	activity sampling	0.972	0.936	0.036	0.374	0.888	0.896
14.	CORR(M06-2X)	$E_{\rm CORR(M06-2X)},\eta_{\rm CORR(M06-2X)}$	activity sampling	0.969	0.929	0.040	0.367	0.887	0.894

Table S8. Same as **Table S5** but for the models based on the total energy (*E*) and chemical hardness (η).

Model S.No.	Method	Descriptor Employed	Splitting Employed	R^2	$Q^2_{\rm LOO}$	$R^2 - Q^2_{LOO}$	$Q^2_{\rm LMO}$	$Q_{\rm F3}^2$	CCC _{EXT}
			Exc	hange (X) On	ly				
1.	DFT/B88	$E_{ m B88}$, $\omega_{ m B88}$	activity sampling	0.947	0.894	0.053	0.649	0.673	0.744
2.	DFT/HFX	$E_{ m HFX}$, $\omega_{ m HFX}$	activity sampling	0.931	0.847	0.084	0.460	0.899	0.914
			Exchange	+ Correlation	n (X+C)				
3.	HFX + LYP	$E_{ m HFX+LYP}$, $\omega_{ m HFX+LYP}$	activity sampling	0.932	0.842	0.090	0.682	0.810	0.937
4.	BLYP	$E_{ m BLYP}$, $\omega_{ m BLYP}$	activity sampling	0.854	0.633	0.221	0.359	0.565	0.857
5.	B3LYP	$E_{ m B3LYP}$, $\omega_{ m B3LYP}$	activity sampling	0.892	0.699	0.193	0.453	0.748	0.888
6.	M06	$E_{ m M06}$, $\omega_{ m M06}$	activity sampling	0.915	0.715	0.200	-	-	-
7.	M06-L	$E_{\mathrm{M06-L}}, \omega_{\mathrm{M06-L}}$	activity sampling	0.908	0.696	0.212	-	-	-
8.	M06-2X	$E_{ m M06-2X}$, $\omega_{ m M06-2X}$	activity sampling	0.935	0.723	0.211	-	-	-
			Electron-Co	orrelation (CC	ORR) only				
9.	CORR(HFX+LYP)	$E_{\text{CORR(HFX+LYP)}}, \omega_{\text{CORR(HFX+LYP)}}$	activity sampling	0.948	0.761	0.187	-	-	-
10.	CORR(BLYP)	$E_{\mathrm{CORR(BLYP)}}$, $\omega_{\mathrm{CORR(BLYP)}}$	activity sampling	0.916	0.735	0.181	-	-	-
11.	CORR(B3LYP)	$E_{\text{CORR(B3LYP)}}, \omega_{\text{CORR(B3LYP)}}$	activity sampling	0.972	0.924	0.049	0.158	0.962	0.978
12.	CORR(M06)	$E_{\mathrm{CORR(M06)}}$, $\omega_{\mathrm{CORR(M06)}}$	activity sampling	0.964	0.903	0.061	0.363	0.898	0.902
13.	CORR(M06-L)	$E_{\text{CORR(M06-L)}}, \omega_{\text{CORR(M06-L)}}$	activity sampling	0.976	0.944	0.032	0.479	0.900	0.909
14.	CORR(M06-2X)	$E_{\text{CORR(M06-2X)}}, \omega_{\text{CORR(M06-2X)}}$	activity sampling	0.970	0.932	0.038	0.380	0.881	0.886

Table S9. Same as **Table S5** but for the models based on the total electronic energy (*E*) and electrophilicity index (ω).

Model S.No.	Descriptor Employed	Splitting Employed	R^2	$Q^2_{\rm LOO}$	$R^2 - Q^2_{LOO}$	$Q^2_{\rm LMO}$	$Q_{\rm F3}^2$	CCC _{EXT}
			TA	100 mutagenicit	у			
1.	$E_{ m HF}$, $E_{ m HF}^{ m HOMO}$	30%	0.743	0.668	0.075	0.643	0.707	0.841
2.	$E_{ m HF}$, $E_{ m HF}^{ m LUMO}$	30%	0.680	0.603	0.077	0.574	0.816	0.682
3.	$E_{ m HF}$, $\chi_{ m HF}$	30%	0.778	0.711	0.067	0.692	0.731	0.859
4.	$E_{ m HF}$, $\eta_{ m HF}$	30%	0.647	0.536	0.111	0.529	0.653	0.793
5.	$E_{ m HF}$, $\omega_{ m HF}$	30%	0.787	0.731	0.056	0.707	0.736	0.860
			T	A98 mutagenicit	7			
6.	$E_{ m HF}$, $E_{ m HF}^{ m HOMO}$	activity sampling	0.958	0.888	0.070	0.757	0.935	0.950
7.	$E_{ m HF}$, $E_{ m HF}^{ m LUMO}$	activity sampling	0.891	0.748	0.143	0.307	0.699	0.763
8.	$E_{ m HF}$, $\chi_{ m HF}$	activity sampling	0.945	0.863	0.081	0.635	0.933	0.943
9.	$E_{ m HF}$, $\eta_{ m HF}$	activity sampling	0.942	0.860	0.082	0.615	0.750	0.852
10.	$E_{ m HF}$, $\omega_{ m HF}$	activity sampling	0.949	0.889	0.060	0.748	0.882	0.898

Table S10. Comparison of the key internal and external validation parameters for the models developed with the total energy (*E*), energy of HOMO (E_{HOMO}), energy of LUMO (E_{LUMO}), absolute electronegativity (χ), chemical hardness (η) and electrophilicity index (ω) computed with the Hartree-Fock (HF) method, for modeling TA100 mutagenicity and TA98 mutagenicity of nitrated-PAHs.

Table S11. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange (X) only (B88, HFX and HF) based methods through activity sampling (ordered response) splitting method.

										<i>N</i> .																				
Model	Variables	Q^2_{LOO} I	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2$	ΔK	RMSE TR	RMSE CV	RMSE EXT	F	Ext.OK Q_{F1}^2	Q_{F2}^2	Q ² _{F3}	CCC TR	CCC _{CV}	CCC EXT	$\bar{r}_m^2 = \Delta$	r_m^2	MAE TR	MAE _{CV}	MAE EXT	RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO} R^2_{\rm Ysc}$	Q^{2}_{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\rm HFX}, E_{\rm HFX}^{\rm HOMO}$	0.7118	0.0639 0.7533	0.0224 0.7757	0.4230	0.8376	0.9496	0.7738	34.5906	5 0.7561	0.7546	0.8086	0.8737	0.8392	0.8666	0.7010 0.	0779	0.6783	0.7793	0.6274	16.1378	20.7390	12.5730	0.7744	0.6258 8.479	-21.5508	9.3239	-20.3343	9.7616	-19.8615
2	$E_{\rm HFX}, \eta_{\rm HFX}$	0.6852	0.0867 0.7491	0.0228 0.7719	0.2362	0.8448	0.9924	0.8392	33.8353	4 0.7131	0.7113	0.7749	0.8713	0.8254	0.8402	0.6812 0.	0915	0.6390	0.7456	0.6984	16.4159	22.6539	14.7905	0.7767	0.5808 9.380	-20.9621	8.8044	-21.2567	9.8392	-19.7071
3	$E_{\rm HFX}, \chi_{\rm HFX}$	0.6796	0.0755 0.7306	0.0245 0.7551	0.1936	0.8754	1.0012	0.8016	30.8308	5 0.7382	0.7366	0.7946	0.8605	0.8198	0.8559 0	0.6663 0.	0777	0.7157	0.8243	0.6457	17.6238	23.0534	13.4949	0.7568	0.6168 8.920	-20.7981	8.5189	-21.7048	8.8984	-20.8981
4	$E_{\rm HF}, \omega_{\rm HF}$	0.6634	0.0777 0.7152	0.0259 0.7411	0.0325	0.9000	1.0263	0.8582	28.6217	1 0.6999	0.6981	0.7646	0.8513	0.8088	0.8298	0.6313 0.	0831	0.7356	0.8448	0.6971	18.6319	24.2235	15.4670	0.7433	0.5645 8.680	-21.4844	9.1632	-20.9202	9.2232	-20.6306
5	$E_{\rm HFX}, \omega_{\rm HFX}$	0.6487	0.0808 0.7024	0.0271 0.7295	0.0172	0.9200	1.0484	0.8708	26.9649	1 0.6911	0.6892	0.7577	0.8436	0.7997	0.8255	0.6163 0.	0829	0.7534	0.8647	0.7072	19.4670	25.2796	15.9226	0.7300	0.5577 8.708	-21.5974	9.4434	-20.3285	9.5160	-20.0754
6	$E_{\rm HF}, \chi_{\rm HF}$	0.6469	0.0820 0.7018	0.0271 0.7289	0.1386	0.9209	1.0510	0.8490	26.8888	3 0.7063	0.7045	0.7696	0.8432	0.7995	0.8413 0	0.6156 0.	0793	0.7912	0.9107	0.6890	19.5072	25.4064	15.1383	0.7351	0.5388 9.173	-20.7737	8.4604	-21.6481	9.1590	-20.8695
7	E_{BSS}, E_{BSS}^{LUMO}	0.6215	0.0827 0.6746	0.0296 0.7042	0.0039	0.9620	1.0882	0.9534	23.8095	1 0.6297	0.6274	0.7095	0.8264	0.7804	0.7869	0.5649 0.	0916	0.7779	0.8898	0.7843	21.2838	27.2379	19.0886	0.7031	0.5278 9.386	-20.4639	9.6104	-20.6987	9.4819	-20.6350
8	$E_{\rm HF},\; E_{\rm HF}^{\rm HOMO}$	0.6187	0.0863 0.6754	0.0295 0.7049	0.3503	0.9608	1.0923	0.8940	23.8899	1 0.6744	0.6725	0.7446	0.8269	0.7807	0.8242	0.5814 0.	0825	0.8225	0.9459	0.7532	21.2333	27.4404	16.7823	0.7094	0.5275 9.601	-20.3977	8.8795	-21.1091	9.0659	-20.9328
9	$E_{\rm BSS},\chi_{\rm BSS}$	0.6047	0.0878 0.6617	0.0308 0.6924	0.0729	0.9809	1.1122	0.9852	22.5143	0 0.6046	0.6022	0.6898	0.8183	0.7706	0.7889 0	0.5328 0.	0941	0.8245	0.9444	0.8612	22.1317	28.4482	20.3816	0.6990	0.4723 9.395	-20.6414	8.5962	-21.2617	9.2430	-20.9216
10	$E_{\rm HF}, E_{\rm HF}^{\rm LUMO}$	0.5884	0.0923 0.6488	0.0319 0.6807	-0.0106	0.9995	1.1348	1.0153	21.3182	0 0.5800	0.5775	0.6705	0.8100	0.7554	0.7406	0.5497 0.	1019	0.7422	0.8465	0.8196	22.9769	29.6209	21.6474	0.6859	0.4761 9.018	-21.3565	8.6193	-21.0723	9.2978	-21.0592
11	$E_{\rm BSS}, \omega_{\rm BSS}$	0.5627	0.1155 0.6460	0.0322 0.6782	0.0757	1.0034	1.1697	1.0247	21.0766	0 0.5722	0.5696	0.6644	0.8083	0.7468	0.7315 0	0.5445 0.	0983	0.7815	0.9211	0.8266	23.1555	31.4702	22.0523	0.6840	0.4408 8.272	-26.5454	9.0316	-21.1739	9.0901	-23.9524
12	$E_{\rm BSS}$, $E_{\rm ESS}^{\rm HOMO}$	0.5593	0.1014 0.6268	0.0339 0.6607	0.2080	1.0303	1.1742	1.0559	19.4724	0 0.5457	0.5430	0.6436	0.7957	0.7392	0.7526	0.4895 0.	0997	0.8580	0.9850	0.9222	24.4159	31.7135	23.4145	0.6657	0.4483 9.377	-20.4344	9.0118	-20.7525	8.9736	-21.2832
13	$E_{\rm HFX}, E_{\rm HFX}^{\rm LUMO}$	0.5347	0.1026 0.6010	0.0363 0.6373	-0.0427	1.0653	1.2066	1.0967	17.5688	0 0.5100	0.5071	0.6156	0.7785	0.7178	0.7050	0.4733 0.	1009	0.8457	0.9679	0.8830	26.1018	33.4839	25.2561	0.6380	0.4174 9.135	-21.7935	9.0360	-20.7048	9.2193	-21.4392
14	$E_{\rm HF}, \eta_{\rm HF}$	0.5316	0.1218 0.6187	0.0347 0.6534	0.2451	1.0414	1.2106	1.0393	18.8484	0 0.5599	0.5572	0.6547	0.7903	0.7222	0.7491 0	0.4994 0.	0962	0.8537	0.9928	0.8703	24.9440	33.7087	22.6851	0.6598	0.4211 9.362	-20.7423	9.3999	-20.4641	9.4572	-20.6024
15	$E_{\rm BSS}, \eta_{\rm BSS}$	0.5042	0.1160 0.5822	0.0380 0.6202	0.2183	1.0900	1.2454	1.1716	16.3314	0 0.4408	0.4374	0.5613	0.7656	0.6977	0.6548 0	0.4273 0.	1078	0.9029	1.0424	0.9618	27.3284	35.6752	28.8243	0.6286	0.4003 9.451	-20.5369	8.8553	-21.5242	8.8120	-21.4746

Models are arranged according to Q²¹_{LOO} values. Parameters are obtained through (SARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.gariti).

 R^2_{adi} adjusted R^2

N. Ext.OK Number of external validation parameters meeting threshold values

Table S12. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange (X) only (B88, HFX and HF) based methods through 30% (random) splitting method.

Model	Variables	Q^{2}_{L00}	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj}$	R^2	$\Delta \mathbf{K}$	RMSE TR	RMSE CV	RMSE EXT	F	Ext.OK Q	${}^{2}_{F1} Q^{2}_{F}$	F2 Q ² F3	CCC TR	CCC cv	CCC EXT	$\overline{r}_m^2 = \Delta r_m^2$	MAE TR	MAE _{CV}	MAE EXT	RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO}$	R^2_{Yscr}	Q^{2}_{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\rm HFX}, \chi_{\rm HFX}$	0.7346	0.0619 0.7815	0.0151	0.7965	0.0847	0.7759	0.8861	0.8393	52.8549	5 0.7	564 0.71	.87 0.7619	0.8868	0.8550	0.8767 0	7526 0.0429	0.6078	0.6860	0.6867	18.0606	23.5575	10.5672	0.8009	0.7180	7.2607	-15.0914	6.6898	-15.3408	7.1007	-15.0420
2	$E_{\rm HFX}, E_{\rm HFX}^{\rm HOMO}$	0.7315	0.0606 0.7767	0.0154	0.7921	0.3632	0.7844	0.8914	0.7958	51.4299	5 0.7	810 0.74	71 0.7860	0.8840	0.8525	0.8869 0	7626 0.0616	0.5997	0.6760	0.6433	18.4569	23.8356	9.5006	0.7931	0.7194	6.6263	-15.6764	6.6681	-15.5010	7.0796	-15.1925
3	$E_{\rm HF}, \omega_{\rm HF}$	0.7309	0.0562 0.7714	0.0158	0.7872	-0.0998	0.7936	0.8923	0.8836	49.9357	4 0.7	300 0.68	82 0.7362	0.8809	0.8519	0.8595 0	7126 0.0112	0.5920	0.6643	0.7703	18.8917	23.8839	11.7108	0.7905	0.7037	6.3514	-15.9934	7.0228	-15.0742	7.2439	-15.2148
4	$E_{\rm HFX}, \omega_{\rm HFX}$	0.7197	0.0590 0.7622	0.0164	0.7786	-0.1096	0.8094	0.9108	0.9048	47.4775	4 0.7	169 0.67	30 0.7233	0.8755	0.8453	0.8540 0	7037 0.0223	0.6123	0.6870	0.7939	19.6533	24.8863	12.2811	0.7813	0.6964	7.1440	-15.3539	6.8225	-15.3359	6.3831	-16.1493
5	$E_{\rm HF}, \chi_{\rm HF}$	0.7109	0.0674 0.7619	0.0164	0.7783	0.0641	0.8100	0.9249	0.8918	47.3911	4 0.7	250 0.68	24 0.7312	0.8753	0.8410	0.8587 0	7139 0.0346	0.6463	0.7296	0.7300	19.6812	25.6616	11.9292	0.7810	0.6861	7.1613	-15.4603	7.0300	-15.0703	6.5662	-16.2433
6	$E_{\rm HF}$, $E_{\rm HF}^{\rm HOMO}$	0.6683	0.0746 0.7238	0.0190	0.7429	0.3233	0.8722	0.9907	0.9306	39.0062	3 0.7	005 0.65	41 0.7073	0.8525	0.8139	0.8412 0	.6774 0.0772	0.6847	0.7725	0.7595	22.8241	29.4451	12.9911	0.7518	0.6238	6.7210	-15.8855	6.7267	-15.5165	7.4222	-14.6763
7	$E_{\rm HFX}, \eta_{\rm HFX}$	0.6673	0.0781 0.7265	0.0189	0.7454	0.2594	0.8681	0.9922	0.8312	39.5143	5 0.7	611 0.72	41 0.7665	0.8541	0.8128	0.8703 0	.6953 0.0753	0.6742	0.7595	0.6598	22.6053	29.5356	10.3624	0.7491	0.6390	7.1346	-15.4306	7.0321	-15.2160	7.0952	-15.1003
8	E_{BSS}, E_{BSS}^{LUMO}	0.6404	0.0846 0.7046	0.0204	0.7250	-0.1122	0.9021	1.0315	0.9066	35.5904	3 0.7	158 0.67	18 0.7222	0.8406	0.7970	0.8490 0	.6735 0.0816	0.7097	0.8027	0.7831	24.4123	31.9199	12.3288	0.7313	0.6139	6.6037	-16.0933	7.1237	-14.7420	7.1495	-15.2317
9	$E_{\rm BSS}$, $\chi_{\rm BSS}$	0.6400	0.0755 0.6944	0.0211	0.7155	0.0224	0.9175	1.0322	0.9633	33.9544	1 0.6	791 0.62	94 0.6864	0.8342	0.7940	0.8303 0	.6560 0.0858	0.7351	0.8240	0.8161	25.2539	31.9605	13.9193	0.7176	0.6210	7.2325	-15.2724	6.4840	-15.6382	6.3503	-16.2029
10	$E_{\rm HF}, E_{\rm HF}^{\rm LUMO}$	0.6034	0.0766 0.6563	0.0237	0.6800	-0.1336	0.9731	1.0833	0.9696	28.6865	0 0.6	749 0.62	45 0.6823	0.8095	0.7686	0.8156 0	.6208 0.0928	0.7348	0.8180	0.7996	28.4074	35.2056	14.1029	0.6846	0.5735	7.1382	-15.2424	6.7603	-15.3687	6.4490	-16.1687
11	$E_{\rm BSS}$, $E_{\rm BSS}^{\rm HOMO}$	0.5589	0.0925 0.6256	0.0258	0.6515	0.2458	1.0155	1.1424	0.9841	25.2330	0 0.6	651 0.61	32 0.6727	0.7890	0.7374	0.8079 0	.5932 0.0992	0.8247	0.9234	0.8107	30.9402	39.1528	14.5275	0.6568	0.5253	6.8770	-15.1902	6.4536	-15.7556	6.8688	-15.4849
12	$E_{\rm HFX}, E_{\rm HFX}^{\rm LUMO}$	0.5445	0.0824 0.5993	0.0276	0.6269	-0.1423	1.0507	1.1609	1.0227	22.6868	0 0.6	383 0.58	23 0.6466	0.7707	0.7267	0.7858 0	.5588 0.1055	0.8249	0.9146	0.8906	33.1172	40.4324	15.6876	0.6299	0.5080	6.5441	-16.7207	6.8613	-15.1975	7.2964	-15.6170
13	$E_{\rm HF}, \eta_{\rm HF}$	0.5359	0.1113 0.6212	0.0261	0.6473	0.2224	1.0216	1.1718	1.0141	24.7744	0 0.6	444 0.58	93 0.6525	0.7859	0.7244	0.7931 0	.5566 0.1081	0.8250	0.9310	0.8050	31.3109	41.1944	15.4254	0.6495	0.5287	6.5382	-16.1358	6.6812	-15.4203	6.8262	-15.2212
14	$E_{\rm BSS}, \omega_{\rm BSS}$	0.4717	0.1708 0.6161	0.0265	0.6426	-0.0423	1.0284	1.2502	0.9574	24.2703	0 0.6	830 0.63	40 0.6902	0.7824	0.7012	0.8044 0	.5410 0.1167	0.8388	0.9773	0.8239	31.7288	46.8934	13.7485	0.6552	0.4773	6.8457	-17.7301	6.6132	-15.4665	7.2000	-16.7876
15	$E_{\rm BSS},\eta_{\rm BSS}$	0.3906	0.1475 0.5040	0.0342	0.5382	0.1043	1.1690	1.3428	1.0468	15.7320	0 0.6	210 0.56	24 0.6297	0.6998	0.6154	0.7455 0	4558 0.1391	0.9990	1.1324	0.9311	40.9964	54.0931	16.4377	0.5480	0.3769	6.6256	-15.8523	7.0499	-15.3708	6.6508	-15.9554

Models are arranged according to Q²LOO values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy. 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S13. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange (X) only (B88, HFX and HF) based methods through activity sampling (ordered response) splitting method.

										IN.																			
Model	Variables	Q^{2}_{LOO} 1	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj}$	$R^2 \Delta K$	RMSE TR	RMSE _{CV}	RMSE EXT	F E	Ext.OK Q_{F1}^2	$Q^{2}_{F2} Q^{2}_{F3}$	CCC TR	CCC cv	$CCC_{EXT} = \overline{r}_m^2$	Δr_m^2	MAE TR	MAE _{CV}	MAE EXT	RSS TR P	RESS CVP.	RESS _{EX}	R^{2}_{LMO}	$Q^2_{\rm LMO}$	R ² _{Yscr}	Q ² _{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\rm BSS}, \omega_{\rm BSS}$	0.8940	0.0534 0.9324	0.0150 0.9	9474 -0.108	0.5225	0.7416	1.3028 63	.0304	0 0.4214	0.4171 0.6729	0.9730	0.9484	0.7442 0.462	25 0.2217	0.4339	0.6341	1.0414	2.7298	5.4998	10.1835	0.9547	0.6493	22.6515	-68.8887	21.1679	-70.8873	21.8555	-70.8699
2	$E_{\rm HF}, \omega_{\rm HF}$	0.8890	0.0596 0.9340	0.0147 0.9	486 -0.083	4 0.5162	0.7588	0.7827 64	.6548	5 0.7912	0.7896 0.8819	0.9736	0.9458	0.8983 0.712	8 0.0925	0.4373	0.6427	0.6161	2.6647	5.7580	3.6757	0.9560	0.7476	22.0542	-67.9474	23.6261	-63.6271	23.3410	-65.0586
3	$E_{\rm HF}, E_{\rm HF}^{\rm HOMO}$	0.8875	0.0703 0.9457	0.0121 0.9	9577 0.467	1 0.4682	0.7642	0.5799 79	.3350	5 0.8853	0.8845 0.9352	0.9784	0.9462	0.9502 0.763	6 0.0700	0.4096	0.6353	0.5081	2.1924	5.8397	2.0179	0.9649	0.7565	22.2405	-67.1080	23.5371	-63.1234	22.6527	-64.4347
4	E_{HFX} , E_{HFX}^{HOMO}	0.8761	0.0770 0.9397	0.0134 0.9	9531 0.450	0 0.4932	0.8017	0.5739 71	.1738	5 0.8877	0.8869 0.9365	0.9760	0.9409	0.9513 0.766	62 0.0685	0.4245	0.6580	0.5013	2.4321	6.4275	1.9759	0.9613	0.5697	22.2525	-65.4665	22.5798	-64.3062	24.6753	-58.3598
5	E_{BSS}, χ_{BSS}	0.8729	0.0778 0.9365	0.0141 0.9	9506 -0.024	4 0.5061	0.8122	0.5322 67	.4013	5 0.9035	0.9027 0.9454	0.9747	0.9392	0.9541 0.816	69 0.0620	0.4020	0.6113	0.5028	2.5615	6.5961	1.6992	0.9594	0.5569	22.5306	-64.6910	21.1065	-75.4198	22.1647	-67.7708
6	$E_{\rm HFX}, \eta_{\rm HFX}$	0.8654	0.0760 0.9246	0.0168 0.9	413 0.065	0.5517	0.8358	0.9202 56	.1759	5 0.7113	0.7092 0.8368	0.9698	0.9352	0.8932 0.696	5 0.1163	0.5008	0.7432	0.7741	3.0433	6.9850	5.0802	0.9474	0.6552	22.7485	-62.9075	21.0681	-70.4397	23.6500	-65.5799
7	$E_{\rm HF}, \chi_{\rm HF}$	0.8632	0.0814 0.9288	0.0158 0.9	446 -0.019	0.5362	0.8426	0.5892 59	.6689	5 0.8816	0.8808 0.9333	0.9715	0.9343	0.9427 0.781	0.0595	0.4565	0.6885	0.5553	2.8750	7.0999	2.0831	0.9533	0.6353	22.6467	-63.7464	22.3072	-68.0599	21.4049	-67.6395
8	E_{BSS} , E_{BSS}^{HOMO}	0.8623	0.0853 0.9326	0.0150 0.9	476 0.224	9 0.5214	0.8453	0.5440 63	.3035	5 0.8991	0.8984 0.9430	0.9731	0.9344	0.9553 0.781	0.0631	0.4120	0.6302	0.4836	2.7186	7.1459	1.7754	0.9574	0.6811	22.2227	-62.9682	21.0369	-70.6898	23.3120	-63.7170
9	E_{B88}, E_{B88}^{LUMO}	0.8612	0.0815 0.9262	0.0164 0.9	426 -0.096	0.5456	0.8488	0.8722 57	.5012	5 0.7407	0.7387 0.8534	0.9705	0.9333	0.8720 0.692	25 0.1437	0.4027	0.6030	0.7259	2.9772	7.2047	4.5644	0.9526	0.6944	21.5767	-67.4983	21.4183	-68.9900	21.1444	-66.5936
10	$E_{\rm HF}, \eta_{\rm HF}$	0.8597	0.0822 0.9254	0.0166 0.9	9420 0.048	0 0.5488	0.8531	1.1388 56	.7945	3 0.5579	0.5546 0.750	0.9701	0.9327	0.8523 0.669	0.1342	0.4924	0.7392	0.9910	3.0121	7.2780	7.7807	0.9495	0.6150	22.7995	-63.2418	22.1783	-73.5844	21.7160	-66.0662
11	$E_{\rm HFX}, \chi_{\rm HFX}$	0.8486	0.0897 0.9208	0.0176 0.9	384 -0.032	8 0.5654	0.8862	0.5563 53	.3046	5 0.8945	0.8937 0.9404	0.9682	0.9274	0.9496 0.788	88 0.0585	0.4469	0.6729	0.5339	3.1971	7.8541	1.8566	0.9490	0.6067	21.1746	-64.9958	22.3567	-67.8936	22.7263	-61.2029
12	$E_{\rm HFX}, \omega_{\rm HFX}$	0.8471	0.0843 0.9118	0.0196 0.9	9314 -0.089	0.5966	0.8908	0.7243 47	.5212	5 0.8212	0.8199 0.8989	0.9645	0.9259	0.9141 0.727	1 0.0886	0.4797	0.7092	0.5765	3.5595	7.9359	3.1472	0.9412	0.4597	22.2852	-66.8020	21.3160	-68.6635	22.5408	-63.4197
13	$E_{\rm BSS}$, $\eta_{\rm BSS}$	0.7856	0.1238 0.8835	0.0259 0.9	0.051	1 0.6858	1.0549	1.1478 35	.1183	1 0.5509	0.5476 0.746	0.9525	0.8968	0.8465 0.563	6 0.1703	0.5870	0.8661	0.9898	4.7027	11.1276	7.9041	0.9225	0.4913	23.3746	-62.0947	22.4306	-68.1555	22.2886	-64.8389
14	$E_{\rm HF}$, $E_{\rm HF}^{\rm LUMO}$	0.7480	0.1427 0.8594	0.0312 0.8	3907 -0.097	7 0.7532	1.1435	1.2496 28	.5148	0 0.4677	0.4638 0.6993	0.9422	0.8764	0.7363 0.521	6 0.1981	0.5976	0.8857	1.0200	5.6727	13.0771	9.3684	0.9057	0.3073	23.9993	-61.6300	21.5777	-68.3425	21.8983	-65.5037
15	$E_{\rm HFX}, E_{\rm HFX}^{\rm LUMO}$	0.6597	0.2003 0.8200	0.0400 0.8	3600 -0.095	6 0.8523	1.3288	1.1782 21	.5007	1 0.5267	0.5232 0.7325	0.9247	0.8328	0.7623 0.550	06 0.1900	0.7038	1.0566	0.9473	7.2642	17.6565	8.3295	0.8847	0.1199	22.5905	-62.4541	21.2489	-71.6427	21.2575	-65.9351

Models are arranged according to Q²₁₀₀ values. Parameters are obtained through QSARNS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.agr.if).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S14. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange (X) only (B88, HFX and HF) based methods through 30% (random) splitting method.

												IN.																					
Model	Variables	Q^2_{LOO}	$R^2 - Q^2_{LOO}$	R^{2}_{adj}	$R^2 - R^2_{adj}$	R^2	$\Delta \mathbf{K}$	RMSE TR	RMSE _{CV}	RMSE EXT	F	Ext.OK	Q_{F1}^2	$Q^{2}_{F2} Q^{2}_{F3}$	CCC TR	CCC cv	CCC EXT	\overline{r}_m^2	Δr_m^2	MAE TR	MAE _{CV}	MAE _{EXT}	RSS TR	PRESS CV P	RESS EXT	R^{2}_{LMO}	Q^{2}_{LMO}	R ² _{Yscr}	Q^2_{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	$Q^2_{\rm Yrand}$
1	$E_{\rm HF}, E_{\rm HF}^{\rm HOMO}$	0.8963	0.0542	0.9363	0.0142	0.9505	0.3682	0.4562	0.6601	0.3709	67.1375	5	0.9643 0	0.9643 0.9672	0.9746	0.9469	0.9826	0.8863	0.0205	0.3858	0.5554	0.3024	2.0808	4.3567	0.6879	0.9541	0.7359	24.1909	-56.6951	23.1834	-66.5499	22.0206	-61.7668
2	$E_{\rm HFX}, E_{\rm HFX}^{\rm HOMO}$	0.8917	0.0567	0.9336	0.0147	0.9484	0.3799	0.4656	0.6744	0.3785	64.3175	5	0.9629 0	0.9628 0.9659	0.9735	0.9445	0.9820	0.8824	0.0220	0.3936	0.5671	0.3204	2.1674	4.5480	0.7163	0.9532	0.7187	22.9371	-58.4484	22.9182	-67.8165	22.4006	-60.0329
3	$E_{\rm HF}, \chi_{\rm HF}$	0.8878	0.0613	0.9346	0.0145	0.9491	0.1252	0.4623	0.6865	0.5594	65.2636	5	0.9189 0	0.9188 0.9255	0.9739	0.9425	0.9622	0.8140	0.0475	0.3916	0.5698	0.4661	2.1376	4.7127	1.5648	0.9543	0.7698	23.3206	-60.1189	22.7955	-65.2709	21.4112	-64.5934
4	E HFex, X HFX	0.8828	0.0651	0.9329	0.0149	0.9478	0.0850	0.4681	0.7017	0.5502	63.5912	5	0.9215 0	0.9215 0.9279	0.9732	0.9398	0.9644	0.8144	0.0461	0.3842	0.5617	0.4720	2.1908	4.9239	1.5138	0.9532	0.7186	21.9321	-61.7354	22.2159	-66.3975	21.5205	-63.3489
5	E_{B88}, E_{E88}^{HOMO}	0.8826	0.0636	0.9309	0.0154	0.9462	0.4568	0.4752	0.7021	0.3764	61.5797	5	0.9633 0	0.9633 0.9663	0.9724	0.9393	0.9815	0.9066	0.0203	0.3923	0.5776	0.3068	2.2586	4.9299	0.7084	0.9525	0.7535	22.0475	-61.2091	21.5975	-69.0357	22.1889	-61.8658
6	$E_{\rm B88}$, $\chi_{\rm B88}$	0.8802	0.0670	0.9322	0.0151	0.9472	0.1505	0.4707	0.7092	0.4902	62.8406	5	0.9377 0	0.9377 0.9428	0.9729	0.9382	0.9702	0.8392	0.0358	0.4140	0.6134	0.4079	2.2156	5.0293	1.2016	0.9537	0.7526	20.9841	-66.8600	23.0754	-66.5819	21.6673	-65.8154
7	$E_{\rm HFX}$, $\eta_{\rm HFX}$	0.8692	0.0586	0.9073	0.0206	0.9279	0.0936	0.5504	0.7411	0.4529	45.0176	5	0.9469 0	0.9468 0.9512	0.9626	0.9327	0.9716	0.9356	0.0264	0.4143	0.5841	0.3548	3.0295	5.4920	1.0255	0.9299	0.6286	21.2630	-65.4999	22.0305	-68.3950	21.7036	-63.0758
8	$E_{\rm HF}$, $\eta_{\rm HF}$	0.8529	0.0661	0.8958	0.0232	0.9190	0.0880	0.5834	0.7860	0.4285	39.6891	5	0.9524 0	0.9524 0.9563	0.9578	0.9243	0.9748	0.9427	0.0264	0.4664	0.6553	0.3259	3.4033	6.1775	0.9182	0.9224	0.5815	22.9847	-62.0211	21.9714	-69.1585	22.7891	-61.6714
9	$E_{\rm HF}, \omega_{\rm HF}$	0.8515	0.0852	0.9186	0.0181	0.9367	-0.0072	0.5156	0.7898	0.7370	51.7953	5	0.8592 0	0.8591 0.8707	0.9673	0.9241	0.9375	0.7525	0.0765	0.4329	0.6448	0.6180	2.6582	6.2381	2.7159	0.9454	0.5902	21.8853	-64.0207	23.2411	-67.2532	21.7012	-63.4208
10	$E_{\rm BSS}$, $\eta_{\rm BSS}$	0.8478	0.0651	0.8880	0.0249	0.9129	0.0973	0.6047	0.7995	0.5561	36.6929	5	0.9199 0	0.9198 0.9264	0.9545	0.9206	0.9557	0.8823	0.0526	0.4451	0.6112	0.4586	3.6570	6.3916	1.5464	0.9167	0.5958	22.0327	-61.6641	21.7324	-69.8288	22.1344	-61.1897
11	$E_{\rm HFX}, \omega_{\rm HFX}$	0.8367	0.0969	0.9146	0.0190	0.9336	-0.0331	0.5282	0.8282	0.7644	49.1755	5	0.8486 0	0.8485 0.8609	0.9656	0.9166	0.9364	0.7479	0.0763	0.4338	0.6523	0.6560	2.7904	6.8594	2.9218	0.9441	0.6665	21.0764	-65.4603	21.8851	-69.6489	22.5857	-61.8280
12	E_{B88}, E_{B88}^{LUMO}	0.8252	0.1027	0.9073	0.0206	0.9279	-0.0376	0.5503	0.8569	0.8481	45.0298	5	0.8136 0	0.8135 0.8287	0.9626	0.9103	0.9178	0.6996	0.0959	0.4535	0.6887	0.6620	3.0288	7.3430	3.5961	0.9380	0.5603	21.8862	-69.8507	23.5395	-63.3053	22.1350	-67.1439
13	$E_{\rm HF}, E_{\rm HF}^{\rm LUMO}$	0.7377	0.1493	0.8547	0.0323	0.8870	-0.0551	0.6889	1.0495	1.1018	27.4691	2	0.6854 0	0.6852 0.7110	0.9401	0.8652	0.8630	0.6254	0.1425	0.5701	0.8325	0.8985	4.7462	11.0150	6.0694	0.8992	0.4532	21.4773	-65.7349	21.1768	-66.4496	21.2866	-65.3895
14	$E_{\rm BSS}$, $\omega_{\rm BSS}$	0.7064	0.1812	0.8556	0.0321	0.8877	-0.0585	0.6869	1.1103	1.1413	27.6559	1	0.6624 0	0.6622 0.6898	0.9405	0.8521	0.8584	0.5974	0.1467	0.5533	0.8595	0.9116	4.7177	12.3286	6.5130	0.9000	0.3259	20.3550	-71.7720	20.7038	-71.0775	23.5845	-62.1699
15	$E_{\rm HFX}, E_{\rm HFX}^{\rm LUMO}$	0.6636	0.2161	0.8454	0.0344	0.8797	-0.0646	0.7107	1.1886	1.1444	25.5999	1	0.6606	0.6604 0.6882	0.9360	0.8308	0.8611	0.6205	0.1432	0.5916	0.9281	0.9512	5.0511	14.1276	6.5482	0.8998	0.2864	23.0206	-63.1027	22.8256	-63.6073	23.8703	-63.1084

Models are arranged according to Q²_{LOO} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S15. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagencity (LogTA100), developed using exchange-correlation (HFX+LYP, BLYP and B3LYP) based methods through activity sampling (ordered response) splitting method.

Model	Variables	Q^{2}_{LOO} 1	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2 \Delta K$	RMSE TR	RMSE CV	RMSE EXT E	xt.OK	Q^2_{F1}	Q^2_{F2}	Q^2_{F3}	CCC TR	CCC cv	CCC EXT	\overline{r}_m^2	Δr_m^2	MAE TR	MAE _{CV}	MAE EXT	RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	Q^{2}_{LMO}	R ² _{Yscr}	Q^{2}_{Yscr}	R ² _{Xrand}	Q^{2}_{Xrand}	R ² _{Yrand}	$Q^2_{\rm Yrand}$
1	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm HOMO}$	0.7102	0.0643 0.7520	0.0225 0.7746 0.4233	0.8398	0.9521	0.8344	5	0.7461	0.7461	0.7775	0.8730	0.8382	0.8787	0.7054	0.0851	0.6806	0.7819	0.6753	16.2222	20.8512	15.3153	0.7775	0.6160	9.0839 -	-20.9894	9.2415	-20.3120	8.8312	-21.1261
2	$E_{\rm HFX+LYP}$, $\eta_{\rm HFX+LYP}$	0.6867	0.0866 0.7506	0.0227 0.7733 0.2414	0.8422	0.9900	0.8964	5	0.7069	0.7069	0.7432	0.8721	0.8266	0.8583	0.6895	0.0966	0.6402	0.7470	0.7482	16.3144	22.5441	17.6789	0.7765	0.5693	9.1633 -	20.9206	8.5543	-21.5851	8.8513	-21.2185
3	$E_{\rm HFX+LYP}$, $\chi_{\rm HFX+LYP}$	0.6745	0.0769 0.7265	0.0249 0.7514 0.1945	0.8819	1.0092	0.8557	5	0.7330	0.7330	0.7660	0.8581	0.8164	0.8719	0.6747	0.0864	0.7212	0.8306	0.6924	17.8894	23.4237	16.1075	0.7563	0.5868	9.6330 -	20.2007	9.3072	-20.3673	8.8481	-21.5107
4	$E_{\rm BLVP}$, $\chi_{\rm BLVP}$	0.6442	0.0838 0.7008	0.0272 0.7280 0.0973	0.9225	1.0551	0.9294	2	0.6850	0.6849	0.7239	0.8426	0.7974	0.8519	0.6123	0.0918	0.7629	0.8786	0.7800	19.5737	25.6021	19.0037	0.7308	0.5560	8.2667 -	22.2341	9.2662	-20.4744	9.0706	-20.9955
5	$E_{\rm BLYP}, E_{\rm BLYP}^{\rm HOMO}$	0.6359	0.0938 0.7027	0.0270 0.7297 0.2344	0.9196	1.0674	0.9313	2	0.6837	0.6837	0.7228	0.8437	0.7934	0.8530	0.6145	0.0917	0.7517	0.8725	0.7828	19.4509	26.2039	19.0805	0.7346	0.5412	8.7711 -	21.1473	8.8202	-21.2763	8.4491	-21.7246
6	$E_{\rm HFX+LYP}$, $\omega_{\rm HFX+LYP}$	0.6340	0.0842 0.6900	0.0282 0.7182 0.0040	0.9390	1.0701	0.9185	1	0.6923	0.6923	0.7304	0.8360	0.7897	0.8478	0.6205	0.0933	0.7612	0.8726	0.7580	20.2798	26.3393	18.5600	0.7192	0.5506	9.6501 -	20.1649	8.7927	-21.1156	8.9105	-21.5348
7	$E_{B3LYP}, E_{B3LYP}^{LUMO}$	0.6212	0.0786 0.6698	0.0300 0.6998 0.0066	6 0.9691	1.0887	0.9832	0	0.6475	0.6474	0.6910	0.8234	0.7783	0.8203	0.5891	0.1029	0.7415	0.8391	0.8079	21.6027	27.2612	21.2657	0.7047	0.4927	9.4259 -	-20.9756	9.1074	-20.7971	9.4459	-20.8007
8	$E_{\rm B3LYP}$, $\chi_{\rm B3LYP}$	0.6174	0.0872 0.6751	0.0295 0.7046 0.0943	0.9614	1.0941	0.9969	0	0.6376	0.6375	0.6823	0.8267	0.7800	0.8320	0.5857	0.0998	0.8262	0.9494	0.8564	21.2566	27.5318	21.8647	0.7079	0.5223	8.9350 -	21.0976	8.9309	-20.9682	9.3311	-20.6773
9	$E_{\rm BLYP}, E_{\rm BLYP}^{\rm LUMO}$	0.6070	0.0930 0.6700	0.0300 0.7000 -0.0065	0.9688	1.1088	0.9637	1	0.6613	0.6613	0.7032	0.8236	0.7717	0.8324	0.5897	0.0976	0.7906	0.9079	0.7992	21.5852	28.2782	20.4313	0.7061	0.5061	8.8386 -	21.4346	8.9275	-21.4680	9.6972	-20.2766
10	$E_{\rm B3LYP}$, $\omega_{\rm B3LYP}$	0.5935	0.0860 0.6474	0.0321 0.6795 0.0847	1.0014	1.1277	1.0363	0	0.6083	0.6083	0.6567	0.8091	0.7625	0.7897	0.5586	0.1096	0.7666	0.8867	0.8516	23.0659	29.2514	23.6283	0.6772	0.4773	9.2834 -	29.2417	9.4739	-20.4226	8.7891	-29.2942
11	$E_{B3LYP}, E_{B3LYP}^{HOMO}$	0.5756	0.0981 0.6411	0.0326 0.6738 0.2485	1.0103	1.1523	1.0680	0	0.5840	0.5840	0.6354	0.8051	0.7512	0.8055	0.5449	0.1073	0.8489	0.9764	0.9253	23.4767	30.5376	25.0934	0.6797	0.4585	9.3052 -	21.0522	9.6978	-20.2786	9.3429	-21.0456
12	$E_{ m BLYP}$, $\omega_{ m BLYP}$	0.5573	0.0854 0.6069	0.0357 0.6426 0.0078	1.0574	1.1769	1.0841	0	0.5714	0.5713	0.6243	0.7824	0.7298	0.7680	0.5272	0.1135	0.8260	0.9292	0.8941	25.7155	31.8579	25.8565	0.6457	0.4365	8.5693 -	-22.7165	9.3737	-20.0531	9.1412	-21.2872
13	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm LUMO}$	0.5289	0.1074 0.5999	0.0364 0.6363 -0.0372	1.0667	1.2140	1.1115	0	0.5494	0.5494	0.6051	0.7777	0.7141	0.7681	0.5064	0.1134	0.8464	0.9712	0.9084	26.1716	33.8989	27.1818	0.6420	0.4090	8.6417 -	22.3318	9.0061	-20.9481	8.5792	-22.2710
14	E_{B3LYP} , η_{B3LYP}	0.4939	0.1350 0.5917	0.0371 0.6289 0.2795	1.0776	1.2584	1.1653	0	0.5048	0.5047	0.5660	0.7721	0.6953	0.7511	0.4819	0.1179	0.8951	1.0462	0.9849	26.7071	36.4215	29.8745	0.6352	0.3820	9.3319 -	21.6752	8.9937	-20.8505	9.8314	-20.4240
15	$E_{ m BLYP}$, $\eta_{ m BLYP}$	0.4165	0.2857 0.6724	0.0298 0.7022 0.2848	0.9653	1.3511	0.9938	0	0.6399	0.6398	0.6844	0.8251	0.6809	0.8300	0.5849	0.1003	0.7574	0.9498	0.8538	21.4295	41.9882	21.7263	0.7278	0.4099	9.3087 -	22.1177	8.6959	-21.4791	9.2233	-22.2913

Models are arranged according to Q²₁₀₀ values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramutica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.agarith).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S16. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using exchange-correlation (HFX+LYP, BLYP and B3LYP) based methods through 30% (random) splitting method.

									N.																				
Model	Variables	Q^{2}_{L00}	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2$	$\Delta \mathbf{K}$	RMSE TR	RMSE _{CV} R	MSE _{EXT} F	Ext.OK	Q_{F1}^{2}	Q_{F2}^2	Q^2_{F3}	$CCC_{\rm TR}$	CCC cv	$CCC_{EXT} = \overline{r}_m^2$	Δr_m^2	MAE TR	MAE CV	MAE EXT R.	SS TR I	PRESS CV 1	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO} R^2$	iser Q ² Yser	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	$Q^2_{\rm Yrand}$
1	E_{BLYP} , η_{BLYP}	0.7206	0.0530 0.7599	0.0137 0.7736	0.1968	0.8259	0.9175	1.6134 56.383	7 0	0.0765	0.0764	0.1360	0.8724	0.8452	0.5029 0.19	46 0.0069	0.6561	0.7241	1.0737 24	1.5558	30.3053	23.4282	0.7774	0.7090 5.7	80 -12.509	8 5.8243	-12.2167	5.7656	-12.3989
2	$E_{\rm HFX+LYP}$, $\eta_{\rm HFX+LYP}$	0.7193	0.0512 0.7566	0.0139 0.7705	0.2638	0.8316	0.9197	0.6273 55.396	0 5	0.8604	0.8604	0.8694	0.8704	0.8443	0.9200 0.79	0.0358	0.6715	0.7382	0.5216 24	1.8932	30.4511	3.5417	0.7758	0.6967 5.8	44 -12.338	8 5.5544	-12.5512	5.9020	-12.4195
3	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm HOMO}$	0.7181	0.0472 0.7511	0.0142 0.7653	0.3512	0.8409	0.9215	0.6402 53.807	8 5	0.8546	0.8546	0.8640	0.8671	0.8427	0.9196 0.76	642 0.0424	0.6758	0.7404	0.4998 25	5.4555	30.5727	3.6886	0.7684	0.6975 5.7	30 -12.415	1 5.7259	-12.3442	5.9728	-12.1645
4	$E_{\rm BLYP}, E_{\rm BLYP}^{\rm HOMO}$	0.6855	0.0526 0.7222	0.0159 0.7381	0.2347	0.8884	0.9735	1.0451 46.495	7 0	0.6125	0.6125	0.6375	0.8493	0.8217	0.7693 0.57	21 0.0488	0.7156	0.7842	0.7857 28	3.4102	34.1162	9.8295	0.7413	0.6640 5.4	92 -12.800	2 5.9906	-12.1287	5.9231	-12.0892
5	$E_{\rm HFX+LYP}$, $\chi_{\rm HFX+LYP}$	0.6813	0.0523 0.7174	0.0161 0.7336	0.0715	0.8960	0.9800	0.6828 45.427	3 5	0.8346	0.8346	0.8453	0.8463	0.8190	0.9066 0.75	96 0.0483	0.7195	0.7876	0.5311 28	3.9003	34.5720	4.1958	0.7386	0.6619 5.7	90 -12.417	5 5.7839	-12.2668	5.8909	-12.3150
6	$E_{\rm BLYP}$, $\chi_{\rm BLYP}$	0.6622	0.0548 0.6999	0.0171 0.7171	0.0414	0.9233	1.0088	0.8912 41.822	1 4	0.7183	0.7182	0.7364	0.8352	0.8061	0.8298 0.70	062 0.0859	0.7464	0.8161	0.6945 30	0.6868	36.6352	7.1477	0.7218	0.6396 6.2	34 -11.780	9 5.6540	-12.4897	5.6782	-12.3711
7	E_{B3LYP} , χ_{B3LYP}	0.6363	0.0560 0.6737	0.0186 0.6923	0.0578	0.9628	1.0468	0.9086 37.127	6 4	0.7071	0.7071	0.7260	0.8182	0.7883	0.8268 0.66	696 0.0890	0.7982	0.8710	0.7412 33	3.3731	39.4516	7.4307	0.6973	0.6153 6.0	31 -12.226	7 6.0337	-12.0689	5.5223	-12.7575
8	$E_{\rm HFX+LYP}$, $\omega_{\rm HFX+LYP}$	0.6310	0.0565 0.6686	0.0189 0.6875	-0.0912	0.9703	1.0544	0.7216 36.303	7 5	0.8153	0.8152	0.8272	0.8148	0.7845	0.8910 0.77	94 0.0547	0.7965	0.8678	0.5480 33	3.8938	40.0212	4.6864	0.6930	0.6056 5.7	69 -12.305	7 5.6544	-12.5262	5.9757	-12.3540
9	$E_{B3LVP}, E_{B3LVP}^{HOMO}$	0.6157	0.0591 0.6550	0.0197 0.6747	0.2897	0.9900	1.0761	1.0253 34.226	2 0	0.6271	0.6270	0.6511	0.8058	0.7736	0.7724 0.61	25 0.1103	0.8241	0.8987	0.8221 35	5.2820	41.6890	9.4610	0.6789	0.5937 5.4	05 -13.058	4 5.4296	-12.6781	5.8064	-12.3999
10	$E_{\rm BLVP}, E_{\rm BLVP}^{\rm LUMO}$	0.6063	0.0617 0.6480	0.0201 0.6681	-0.0932	1.0000	1.0891	0.7427 33.210	4 5	0.8043	0.8043	0.8169	0.8010	0.7676	0.8802 0.79	0.0545	0.8177	0.8915	0.5847 36	5.0030	42.7007	4.9642	0.6737	0.5759 5.9	42 -12.331	5 5.7791	-12.2880	5.7610	-12.2556
11	$E_{B3LYP}, E_{B3LYP}^{LUMO}$	0.5835	0.0639 0.6260	0.0214 0.6474	-0.0971	1.0307	1.1203	0.7204 30.295	7 5	0.8159	0.8158	0.8277	0.7860	0.7509	0.8855 0.82	13 0.0432	0.8410	0.9157	0.5506 38	3.2454	45.1815	4.6713	0.6490	0.5710 5.6	29 -12.490	2 5.6884	-12.4562	5.4763	-12.8388
12	$E_{\rm B3LYP}$, $\omega_{\rm B3LYP}$	0.5412	0.0696 0.5872	0.0236 0.6108	-0.0681	1.0829	1.1757	0.7637 25.896	4 5	0.7931	0.7931	0.8064	0.7584	0.7203	0.8625 0.87	68 0.0323	0.8871	0.9670	0.5611 42	2.2140	49.7654	5.2489	0.6135	0.5165 5.6	79 -13.070	5 5.4357	-12.7487	5.7049	-12.7142
13	$E_{\rm BLYP}$, $\omega_{\rm BLYP}$	0.5262	0.0686 0.5703	0.0246 0.5949	-0.1342	1.1048	1.1948	0.7517 24.227	0 5	0.7995	0.7995	0.8124	0.7460	0.7070	0.8800 0.75	90 0.0507	0.8894	0.9648	0.5735 43	3.9443	51.3906	5.0859	0.5993	0.4986 5.9	325 -12.407	2 5.5046	-12.5163	5.8950	-12.3335
14	$E_{\rm B3LVP}$, $\eta_{\rm B3LVP}$	0.5208	0.0926 0.5900	0.0234 0.6135	0.1973	1.0792	1.2015	1.1270 26.186	4 C	0.5494	0.5494	0.5785	0.7604	0.7094	0.6925 0.53	0.0031	0.9060	0.9981	0.8760 41	1.9272	51.9724	11.4303	0.6226	0.5008 5.7	97 -12.679	4 5.6244	-12.6333	6.1563	-12.1235
15	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm LUMO}$	0.5022	0.0754 0.5521	0.0256 0.5777	-0.1044	1.1280	1.2246	0.9171 22.570	2 4	0.7016	0.7016	0.7208	0.7323	0.6891	0.7904 0.78	816 0.0381	0.9238	1.0038	0.7075 45	5.8078	53.9915	7.5698	0.5823	0.4722 5.4	644 -13.112	1 5.4830	-12.8185	5.5700	-12.9921

Models are arranged according to Q²LCO values. Parameters are obtained through QSARNS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S17. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using meta exchange-correlation functionals (M06, M06-L and M06-2X) based methods through activity sampling (ordered response) splitting method.

								<i>I</i> N.																		
Model	Variables	Q^2_{LOO} K	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2 \Delta K$	RMSE TE	R RMSE CV	RMSE EXT F	Ext.OK $Q_{F1}^2 Q_F^2$	Q^{2}_{F3}	CCC TR	CCC _{CV}	$CCC_{EXT} = \overline{r}_m^2$	Δr_m^2	MAE TR	MAE CV	MAE EXT RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	Q^2_{LMO} I	₹ ² _{Yscr}	Q ² _{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{M06-L}, E_{M06-L}^{LUM0}$	0.6061	0.1087 0.6863	0.0285 0.7148 -0.150	0.947	7 1.1138	0.8564 25.0673	3 0.704 0.69	48 0.7671	0.8337	0.7767	0.85 0.67	734 0.0428	0.7993	0.9312	0.6423 20.6559	28.5327	14.6669	0.7156	0.5170 8	.9048 -	21.3705	9.0194	-20.6567	8.8857	-21.1523
2	$E_{\rm M06-2X}$, $\omega_{\rm M06-2X}$	0.5977	0.1046 0.6726	0.0298 0.7024 -0.14	0.9682	2 1.1256	0.9098 23.5971	1 0.6659 0.65	55 0.7372	0.8252	0.769	0.8243 0.62	243 0.0471	0.7889	0.9146	0.7072 21.5598	29.1392	16.5556	0.7070	0.5029 8	.9929 -	21.1497	9.034	-20.8322	9.1942	-21.1689
3	E_{M06}, E_{M06}^{LUM0}	0.5889	0.1087 0.6673	0.0302 0.6976 -0.14	0.9759	9 1.1379	0.8737 23.0655	5 1 0.6919 0.68	23 0.7576	0.8218	0.7634	0.8367 0.64	178 0.0861	0.8052	0.9341	0.6765 21.9064	29.7801	15.2679	0.6998	0.5108	9.063 -	20.7371	8.9168	-21.0906	9.1405	-20.9918
4	$E_{M06-2X}, \chi_{M06-2X}$	0.5591	0.118 0.6448	0.0323 0.6771 -0.046	56 1.0084	4 1.1784	0.7806 20.9716	5 0.7541 0.74	64 0.8065	0.8075	0.746	0.8679 0.70	086 0.0291	0.8636	1.0032	0.6148 23.3874	31.9369	12.1875	0.6840	0.4634 8	.8934 -	21.4506	9.3654	-20.5769	9.0199	-21.3408
5	$E_{M06-2X}, E_{M06-2X}^{LUM0}$	0.5569	0.1123 0.6361	0.0331 0.6692 -0.145	5 1.0207	7 1.1813	0.8955 20.2279	1 0.6763 0.66	63 0.7454	0.8018	0.74	0.8157 0.61	138 0.1117	0.8199	0.947	0.6872 23.9628	32.0982	16.0391	0.6733	0.4473 9	.2154 -	20.9118	9.3731	-20.6479	9.0196	-21.3004
6	E _{M06} , χ _{M06}	0.5565	0.1201 0.6443	0.0323 0.6766 -0.046	58 1.0092	2 1.1818	0.7807 20.9211	L 5 0.754 0.74	63 0.8065	0.8071	0.745	0.8693 0.71	113 0.0119	0.8653	1.0077	0.6071 23.4256	32.1243	12.1909	0.6802	0.4656	8.912 -	21.6633	9.0612	-20.9569	9.1491	-21.0229
7	$E_{\rm M06}$, $\omega_{\rm M06}$	0.5391	0.1182 0.6231	0.0343 0.6573 -0.108	1.0388	8 1.2047	0.9293 19.1839	1 0.6515 0.64	06 0.7258	0.7933	0.7306	0.789 0.5	582 0.0629	0.8344	0.9684	0.7034 24.82	33.3823	17.2711	0.6630	0.4273 8	.9816 -	21.9561	9.6895	-19.909	9.2673	-21.1627
8	E _{M06-L} , χ _{M06-L}	0.5193	0.126 0.6099	0.0355 0.6454 -0.046	57 1.0568	8 1.2304	0.7946 18.197	5 0.7452 0.73	72 0.7995	0.7845	0.7174	0.8591 0.69	963 0.0024	0.9039	1.0479	0.6405 25.6888	34.8171	12.629	0.6537	0.3933 8	.6882 -	21.8218	8.9025	-20.9187	9.0413	-21.0772
9	$E_{M06-L}, \omega_{M06-L}$	0.4953	0.123 0.5802	0.0382 0.6183 -0.048	1.096	3 1.2608	0.9983 16.2015	5 0 0.5978 0.58	52 0.6835	0.7642	0.6981	0.7252 0.53	374 0.0578	0.9112	1.0535	0.773 27.6452	36.5583	19.9331	0.6187	0.4057 9	.3782 -	22.4399	8.7937	-21.2473	8.6473	-23.5715
10	$E_{M06-2X}, E_{M06-2X}^{HOMO}$	0.4888	0.1367 0.588	0.0375 0.6255 0.15	53 1.086	6 1.2689	0.8582 16.7008	2 0.7027 0.69	35 0.7661	0.7696	0.6954	0.8249 0.64	\$59 0.0071	0.9022	1.0477	0.6951 27.1282	37.0297	14.7315	0.6371	0.3720 9	.1317 -	20.8141	9.5143	-20.106	9.2712	-21.0597
11	E_{M06}, E_{M06}^{HOMO}	0.484	0.1389 0.5852	0.0377 0.6229 0.109	3 1.0897	7 1.2747	0.8562 16.5212	2 0.7042 0.69	49 0.7672	0.7677	0.6924	0.8278 0	.65 0.0102	0.9101	1.0582	0.6955 27.312	37.3733	14.6608	0.6301	0.4248 9	.1619 -	21.0887	9.082	-20.9086	9.532	-20.3311
12	$E_{M06-L}, E_{M06-L}^{HOMO}$	0.4349	0.1566 0.5508	0.0408 0.5916 0.030	1.134	1 1.334	0.8854 14.4855	5 1 0.6836 0.67	38 0.7511	0.7434	0.6567	0.8063 0.62	276 0.0024	0.9396	1.0929	0.7227 29.5827	40.9295	15.6783	0.6033	0.3438 8	.7519 -	21.5956	9.1232	-20.9926	8.9122	-21.3319
13	$E_{M06-2X}, \eta_{M06-2X}$	0.3856	0.1803 0.5225	0.0434 0.5659 0.30	1.1692	2 1.391	0.9948 13.0388	0 0.6006 0.58	81 0.6858	0.7228	0.6213	0.7377 0.54	152 0.0009	0.9524	1.1162	0.8255 31.4403	44.5033	19.7931	0.5809	0.2967 8	.7939 -	21.6215	9.3398	-20.5981	9.3088	-20.5606
14	$E_{\rm M06}$, $\eta_{\rm M06}$	0.372	0.1849 0.5126	0.0443 0.5569 0.292	1.181	3 1.4064	1.0036 12.5682	0 0.5935 0.58	09 0.6802	0.7154	0.6107	0.7303 0.54	105 0.0009	0.9693	1.136	0.8309 32.0958	45.4913	20.1428	0.5657	0.2913	9.217 -	21.1696	8.9569	-20.9562	8.9464	-21.4671
15	$E_{\rm M06-L}$, $\eta_{\rm M06-L}$	0.3404	0.1933 0.4871	0.0466 0.5337 0.067	1.2118	8 1.4413	1.0351 11.4462	0 0.5676 0.55	41 0.6598	0.696	0.5836	0.6928 0.52	231 0.0422	1.0221	1.2016	0.8467 33.775	47.7775	21.4295	0.5483	0.2225 8	.9472 -	21.8243	8.6665	-21.3824	9.2377	-21.4807

Models are arranged according to Q²1000 values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramutica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.agarin).

 R^2_{adi} adjusted R^2

N. Ext.OK Number of external validation parameters meeting threshold values

Table S18. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using meta exchange-correlation functionals (M06, M06-L and M06-2X) based methods through 30% (random) splitting method.

									<i>I</i> N .							2 .	2													
Model	Variables	$Q_{100}^2 R$	$2^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2$	$\Delta \mathbf{K}$	RMSE TR	RMSE CV	RMSE EXT F	Ext.OK	Q_{F1}^2	Q_{F2}^{2}	Q^2_{F3}	CCC TR	CCC _{CV}	CCC EXT	$\bar{r}_m^2 \Delta r$	m MAI	E _{TR} MA	AE _{CV}	MAE EXT RSS TR	PRESS CV	PRESS EXT	R ² LMO	$Q^2_{\rm LMO}$	R ² Yscr	Q ² Yser	R ² _{Xrand}	Q^2_{Xrand}	R ² Yrand	Q^2_{Yrand}
1	$E_{M06-L}, E_{M06-L}^{LUM0}$	0.6457	0.059 0.6836	0.0211 0.7047	-0.1039	0.9344	1.0235	0.7741 33.402	7 5	0.8045	0.7692 0	0.7973	0.8267	0.7963	0.8539	0.7385 0.0	511 0.7	7329 0.	.8094	0.6806 27.067	32.4746	7.7897	0.7072	0.6324	6.631	-14.9168	6.5415	-14.9054	6.8114	-14.65
2	E _{M06} , X _{M06}	0.645	0.0586 0.6824	0.0212 0.7036	0.0425	0.9361	1.0245	0.8487 33.228	3 4	0.765	0.7226 0	0.7563	0.826	0.7956	0.8356	0.6982 0.0	866 0.7	7665 0.	.8447	0.6791 27.1674	32.5369	9.3648	0.7058	0.6239	7.0021	-14.4278	6.4345	-14.9124	6.6507	-14.9168
3	$E_{\rm M06-2X}$, $\omega_{\rm M06-2X}$	0.6444	0.0573 0.6804	0.0213 0.7017	-0.0991	0.939	1.0253	0.8381 32.937	5 4	0.7708	0.7295 0	0.7624	0.8247	0.795	0.8262	0.6796 0.0	736 0.7	251 0.	.7989	0.7122 27.3359	32.5894	9.1321	0.7047	0.6189	6.4535	-15.2116	6.263	-15.2692	6.8421	-14.8103
4	E_{M06-2X} , χ_{M06-2X}	0.6391	0.0591 0.6766	0.0216 0.6982	0.0362	0.9447	1.033	0.8283 32.381	5 4	0.7762	0.7358 (0.7679	0.8223	0.7915	0.8418	0.7144 0.0	854 0.7	7836 0.	0.8632	0.664 27.6636	33.0781	8.9188	0.7020	0.6082	6.5018	-15.2048	6.603	-14.8244	6.6091	-15.1715
5	E_{M06}, E_{M06}^{LUMO}	0.6355	0.0597 0.6734	0.0218 0.6951	-0.1043	0.9493	1.0381	0.815 31.924	2 4	0.7833	0.7442 0	0.7753	0.8202	0.7892	0.8358	0.6921 0.0	706 0.7	7311 (0.805	0.697 27.9392	33.4086	8.6348	0.6995	0.6169	6.5893	-14.9388	6.3198	-15.155	6.5335	-15.1558
6	$E_{\rm M06}$, $\omega_{\rm M06}$	0.6198	0.0631 0.6602	0.0227 0.6829	-0.0821	0.9682	1.0602	0.9577 30.14	9 1	0.7008	0.6468	0.6898	0.8116	0.7792	0.7711	0.5522 0.1	025 0.7	7574 0.	.8361	0.7881 29.0626	34.844	11.9233	0.6894	0.5835	6.521	-15.6171	7.1178	-14.0682	6.9362	-14.9774
7	$E_{\rm M06-L}, \chi_{\rm M06-L}$	0.6156	0.0637 0.6564	0.0229 0.6793	0.0207	0.9736	1.066	0.857 29.661	L 4	0.7604	0.7172 0	0.7516	0.8091	0.7755	0.8252	0.6854 0.0	/22 0.	.797 0.	.8776	0.7075 29.3874	35.2282	9.5474	0.6817	0.5926	6.7324	-14.8209	6.2714	-15.1945	6.9439	-14.6665
8	$E_{M06-2X}, E_{M06-2X}^{LUM0}$	0.6119	0.0623 0.6509	0.0233 0.6742	-0.1068	0.9814	1.0712	0.87 28.969	7 3	0.7531	0.7085	0.744	0.8054	0.7727	0.8091	0.6293 0.0	348 (0.75 0.	.8248	0.7097 29.8602	35.5689	9.8387	0.6771	0.5876	6.2714	-15.4525	6.6731	-14.6313	6.7733	-14.9116
9	$E_{\rm M06-L}$, $\omega_{\rm M06-L}$	0.5888	0.069 0.6335	0.0244 0.6579	-0.0499	1.0057	1.1025	1.0841 26.923	L 0	0.6165	0.5473 0	0.6024	0.7937	0.7585	0.7067	0.4399 0.1	277 0.8	8148 0.	.9007	0.9221 31.3536	37.6819	15.2798	0.6668	0.5456	6.5828	-16.1135	6.7211	-14.6945	6.5068	-16.2047
10	E_{M06}, E_{M06}^{HOMO}	0.5881	0.0715 0.6352	0.0243 0.6595	0.3063	1.0033	1.1036	0.9461 27.1	2 1	0.708	0.6553 0	0.6972	0.7948	0.7562	0.7899	0.6135 0.0	705 0.8	8077 (0.891	0.7751 31.2034	37.7531	11.6363	0.6655	0.5566	6.4845	-15.3083	6.5776	-14.8402	6.3259	-15.5547
11	$E_{M06-2X}, E_{M06-2X}^{HOMO}$	0.5831	0.0726 0.6311	0.0246 0.6557	0.3457	1.0089	1.1103	0.9304 26.659	9 2	0.7176	0.6666 0	0.7072	0.792	0.7527	0.7946	0.6254 0.0	338 0.	.813 0.	.8975	0.7556 31.5565	38.2123	11.2545	0.6607	0.5602	7.2481	-14.2227	6.6043	-14.7153	6.3517	-15.3904
12	$E_{M06-L}, E_{M06-L}^{HOMO}$	0.551	0.0827 0.6076	0.0262 0.6337	0.2823	1.0406	1.1521	0.9651 24.222	L 0	0.6962	0.6413	0.685	0.7758	0.7302	0.769	0.5479 0.1	0.8	3266 0.	0.9131	0.7963 33.5692	41.1502	12.1073	0.6405	0.5199	6.7844	-14.6291	7.0666	-14.2034	6.7418	-15.101
13	$E_{ m M06-2X}$, $\eta_{ m M06-2X}$	0.4616	0.1262 0.5584	0.0294 0.5878	0.1338	1.1039	1.2616	1.0442 19.966	3 0	0.6443	0.5801 0	0.6312	0.7404	0.6705	0.7137	0.4312 0.	L45 0.9	9217 1.	.0399	0.884 37.7746	49.3395	14.1748	0.5983	0.4594	6.7489	-14.9611	6.9357	-14.347	6.3502	-15.6883
14	$E_{\rm M06}$, $\eta_{\rm M06}$	0.4527	0.1304 0.5533	0.0298 0.5831	0.1358	1.1102	1.272	1.0627 19.578	2 0	0.6315	0.565	0.618	0.7366	0.6644	0.7031	0.4145 0.1	505 0.	.932 1.	.0533	0.9087 38.2118	50.1586	14.6824	0.5971	0.4514	6.4859	-15.2957	6.7911	-14.5454	6.8381	-14.8391
15	E_{M06-L}, η_{M06-L}	0.4363	0.1327 0.5383	0.0308 0.5691	0.1038	1.1287	1.2909	1.1237 18.486	ə 0	0.588	0.5137 (0.5729	0.7253	0.6507	0.6631	0.3501 0.1	788 0.9	9562 1.	.0814	1.0061 39.4954	51.6593	16.4154	0.5858	0.4303	6.6439	-15.3211	6.6466	-14.8362	6.4947	-15.5033

Models are arranged according to Q²_{LOO} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S19. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange-correlation (HFX+LYP, BLYP and B3LYP) based methods through activity sampling (ordered response) splitting method.

									N.																	
Model	Variables	Q^{2}_{LOO} 1	$R^2 \cdot Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2$	$\Delta \mathbf{K}$	RMSE TR	RMSE CV	RMSE EXT F	Ext.OK	$Q^{2}_{F1} Q^{2}$	$Q_{F2}^2 Q_{F3}^2$	CCC TR	CCC _{CV}	$CCC_{EXT} \overline{r}_m^2 \qquad \Delta r_m^2$	MAE TR	MAE CV	MAE EXT RSS TR	PRESS CV 1	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO} = R^2_{\rm Yscr}$	Q ² _{Yser}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm HOMO}$	0.8921	0.0561 0.9333	0.0148 0.9481	0.3791	0.4667	0.6732	0.3717 63.996	3 5	0.9642 0.9	642 0.9671	0.9734	0.9447	0.9826 0.8862 0.0213	0.3952	0.5680	0.3145 2.1777	4.5318	0.6907	0.9528	0.7629 21.9794	-61.7079	21.7589	-70.1808	22.4744	-61.4373
2	$E_{\text{B3LYP}}, E_{\text{B3LYP}}^{\text{HOMO}}$	0.8897	0.0581 0.9329	0.0149 0.9478	0.4409	0.4683	0.6805	0.3691 63.521	3 5	0.9647 0.9	647 0.9676	0.9732	0.9432	0.9827 0.8879 0.0204	0.3837	0.5550	0.3065 2.1931	4.6312	0.6811	0.9521	0.7383 22.1647	-61.2524	22.0663	-68.2821	22.2077	-61.2150
3	$E_{\rm BLYP}$, $\chi_{\rm BLYP}$	0.8847	0.0653 0.9357	0.0143 0.9500	0.1003	0.4584	0.6959	0.4817 66.464	3 5	0.9399 0.9	398 0.9448	0.9743	0.9406	0.9720 0.8238 0.0347	0.3879	0.5799	0.3941 2.1009	4.8430	1.1601	0.9574	0.7270 21.8175	-67.1722	22.0540	-67.3895	20.7748	-66.5595
4	$E_{\rm HFX+LYP}$, $\chi_{\rm HFX+LYP}$	0.8831	0.0651 0.9335	0.0148 0.9483	0.0812	0.4661	0.7006	0.5405 64.155	7 5	0.9243 0.9	242 0.9304	0.9734	0.9401	0.9658 0.8105 0.0443	0.3875	0.5681	0.4707 2.1726	4.9080	1.4609	0.9558	0.7078 21.7435	-62.2515	21.4043	-70.4791	22.1623	-60.9956
5	$E_{\rm BLVP}, E_{\rm BLVP}^{\rm HOMO}$	0.8814	0.0644 0.9304	0.0155 0.9458	0.4835	0.4770	0.7057	0.3781 61.1130	D 5	0.9630 0.9	629 0.9660	0.9722	0.9387	0.9817 0.8854 0.0203	0.3848	0.5665	0.3002 2.2749	4.9797	0.7147	0.9512	0.7480 20.8031	-64.4687	21.8562	-68.5860	21.4284	-62.1607
6	$E_{\rm B3LYP}$, $\chi_{\rm B3LYP}$	0.8794	0.0687 0.9333	0.0148 0.9481	0.1015	0.4669	0.7116	0.4985 63.9202	2 5	0.9356 0.9	356 0.9408	0.9734	0.9380	0.9703 0.8163 0.0373	0.3950	0.5881	0.4116 2.1801	5.0640	1.2423	0.9545	0.7643 23.5082	-60.1483	21.5496	-70.2395	21.5255	-63.6436
7	$E_{\rm HFX+LYP}$, $\eta_{\rm HFX+LYP}$	0.8627	0.0605 0.9013	0.0219 0.9232	0.0925	0.5679	0.7593	0.4647 42.0728	8 5	0.9440 0.9	440 0.9486	0.9601	0.9294	0.9694 0.9431 0.0041	0.4268	0.6012	0.3796 3.2253	5.7655	1.0796	0.9241	0.5293 22.3573	-63.8950	21.4242	-67.5565	23.5924	-58.3102
8	$E_{\rm B3LYP}$, $\eta_{\rm B3LYP}$	0.8513	0.0628 0.8896	0.0245 0.9141	0.0957	0.6006	0.7903	0.5406 37.2520	6 5	0.9243 0.9	242 0.9304	0.9551	0.9233	0.9583 0.9095 0.0462	0.4353	0.6074	0.4339 3.6068	6.2455	1.4612	0.9143	0.6270 23.9290	-57.5111	22.7135	-65.9103	21.6030	-65.7885
9	E_{BLYP} , η_{BLYP}	0.8403	0.0633 0.8760	0.0276 0.9035	0.0892	0.6365	0.8190	0.5912 32.7810	6 5	0.9094 0.9	094 0.9168	0.9493	0.9166	0.9490 0.8675 0.0581	0.4487	0.6115	0.4868 4.0512	6.7078	1.7475	0.9057	0.5090 22.8803	-62.7192	23.5435	-67.2161	22.7790	-62.8621
10	$E_{\rm HFX+LYP}$, $\omega_{\rm HFX+LYP}$	0.8363	0.0968 0.9140	0.0191 0.9331	-0.0438	0.5301	0.8291	0.7803 48.8159	95	0.8422 0.8	421 0.8550	0.9654	0.9166	0.9342 0.7364 0.0790	0.4562	0.6839	0.6484 2.8096	6.8737	3.0443	0.9441	0.6290 21.6940	-64.7598	20.9693	-72.3987	22.7684	-61.7637
11	$E_{\rm BLYP}, E_{\rm BLYP}^{\rm LUMO}$	0.8230	0.1040 0.9061	0.0209 0.9270	-0.0447	0.5537	0.8622	0.8297 44.4478	8 5	0.8216 0.8	215 0.8361	0.9621	0.9090	0.9245 0.6878 0.0904	0.4537	0.6942	0.6379 3.0655	7.4344	3.4416	0.9363	0.6446 21.9277	-74.3680	20.8247	-68.6930	22.4754	-71.1257
12	$E_{B3LYP}, E_{B3LYP}^{LUMO}$	0.7862	0.1319 0.8948	0.0234 0.9182	-0.0568	0.5862	0.9475	0.8874 39.275	2 5	0.7959 0.7	958 0.8125	0.9573	0.8914	0.9150 0.6778 0.1000	0.4712	0.7324	0.6990 3.4362	8.9772	3.9370	0.9330	0.4793 21.7020	-70.7957	23.9076	-63.0904	21.9027	-68.1805
13	$E_{\rm B3LYP}$, $\omega_{\rm B3LYP}$	0.6994	0.1926 0.8611	0.0309 0.8920	-0.0625	0.6735	1.1236	1.0298 28.9039	9 4	0.7252 0.7	250 0.7475	0.9429	0.8509	0.8879 0.6370 0.1242	0.5435	0.8579	0.8450 4.5361	12.6237	5.3027	0.9057	0.3130 22.7737	-64.4224	21.9101	-68.6705	22.4299	-63.9915
14	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm LUMO}$	0.6972	0.1906 0.8557	0.0321 0.8878	-0.0668	0.6866	1.1277	1.1299 27.683	2 1	0.6691 0.6	689 0.6960	0.9405	0.8470	0.8696 0.6139 0.1375	0.5644	0.8790	0.9486 4.7136	12.7167	6.3836	0.9033	0.4389 22.4945	-62.6439	21.8520	-70.1848	21.9754	-65.0578
15	$E_{\rm BLYP}$, $\omega_{\rm BLYP}$	0.6171	0.2400 0.8164	0.0408 0.8572	-0.0575	0.7745	1.2680	1.1610 21.003	5 1	0.6507 0.6	504 0.6790	0.9231	0.8080	0.8540 0.5910 0.1498	0.6257	0.9798	0.9607 5.9986	16.0789	6.7400	0.8747	0.2503 21.9825	-66.6553	21.4262	-70.2615	22.0693	-64.8659

Models are arranged according to Q_{100}^2 values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S20. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using exchange-correlation (HFX+LYP, BLYP and B3LYP) based methods through 30% (random) splitting method.

										N.																	
Model	Variables	Q^{2}_{L00}	$R^2 \cdot Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} = R^2$	Δ K	RMSE TR	RMSE CV I	RMSE EXT	F I	Ext.OK Q ² _F	Q_{F2}^{2}	Q_{F3}^{2}	CCC TR	CCC cv	CCC EXT	$\overline{r}_m^2 = \Delta r_m^2$	MAE TR	MAE _{CV}	MAE EXT RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO} = R^2_{\rm Yscr}$	Q ² Yser	R ² _{Xrand}	$Q^2_{Xrand} R^2_{Yran}$	$d Q^2_{Yrand}$
1	$E_{\rm HFX+LYP}, E_{\rm HFX+LYP}^{\rm HOMO}$	0.8851	0.0558 0.9261	0.0148 0.940	0.3848	0.4749	0.6624	0.2453 63	1.7044	5 0.98	75 0.9875	0.9842	0.9696	0.9407	0.9938 (.9576 0.0080	0.4089	0.5663	0.2116 2.4813	4.8261	0.2406	0.9434	0.6994 19.8221	-53.9691	19.8985	-58.0855 21.359	-50.4427
2	$E_{\rm BLYP}$, $\chi_{\rm BLYP}$	0.8826	0.0621 0.9308	0.0138 0.944	47 0.0855	0.4596	0.6695	0.4298 68	8.2891	5 0.96	L7 0.9616	6 0.9516	0.9715	0.9391	0.9819 0	.8710 0.0224	0.3969	0.5697	0.3362 2.3239	4.9301	0.7391	0.9499	0.7150 20.1971	-56.0847	19.7550	-58.1195 19.620	-58.2302
3	$E_{B3LYP}, E_{B3LYP}^{HOMO}$	0.8824	0.0576 0.9250	0.0150 0.940	00 0.4467	0.4786	0.6701	0.2270 62	.6802	5 0.98	3 0.9893	0.9865	0.9691	0.9389	0.9947 (.9621 0.0067	0.3970	0.5514	0.1958 2.5194	4.9389	0.2061	0.9452	0.7427 20.1310	-53.3814	20.5526	-56.5028 19.593	-54.0735
4	$E_{\rm HFX+LVP}$, $\chi_{\rm HFX+LVP}$	0.8822	0.0618 0.9300	0.0140 0.944	40 0.0665	0.4624	0.6707	0.5261 67	.4389	5 0.94	26 0.9425	0.9275	0.9712	0.9392	0.9739 (.8548 0.0318	0.3917	0.5532	0.4492 2.3516	4.9482	1.1073	0.9488	0.7782 19.9449	-54.7623	19.3021	-57.3220 18.285	51 -56.6318
5	E B3LVP , X B3LVP	0.8782	0.0650 0.9291	0.0142 0.943	33 0.0863	0.4655	0.6818	0.4590 66	6.4853	5 0.95	53 0.9563	0.9448	0.9708	0.9370	0.9796 (.8600 0.0253	0.4014	0.5747	0.3648 2.3834	5.1139	0.8428	0.9495	0.7200 20.3673	-54.2044	20.6016	-55.7319 21.629	-52.6924
6	$E_{\rm BLYP}, E_{\rm BLYP}^{\rm HOMO}$	0.8738	0.0639 0.9221	0.0156 0.937	77 0.4762	0.4877	0.6940	0.2318 60	0.2189	5 0.98	39 0.9888	0.9859	0.9679	0.9342	0.9944 (.9596 0.0066	0.4123	0.5801	0.1841 2.6160	5.2985	0.2149	0.9435	0.7206 21.1418	-51.2546	20.9238	-54.5191 20.974	-51.8951
7	$E_{\rm HFX+LVP}$, $\eta_{\rm HFX+LVP}$	0.8498	0.0582 0.8850	0.0230 0.908	80 0.0862	0.5926	0.7572	0.3264 39	.4896	5 0.97	79 0.9779	0.9721	0.9518	0.9215	0.9875 0	.8822 0.0140	0.4534	0.6032	0.2858 3.8628	6.3073	0.4261	0.9078	0.6691 19.6280	-57.3645	19.1549	-57.7598 19.526	-56.9078
8	$E_{\rm HFX+LYP}$, $\omega_{\rm HFX+LYP}$	0.8416	0.0903 0.9148	0.0170 0.931	19 -0.0530	0.5101	0.7777	0.8520 54	.7039	5 0.84	95 0.8493	0.8099	0.9647	0.9191	0.9372 (.7556 0.0686	0.4373	0.6369	0.7376 2.8617	6.6529	2.9036	0.9402	0.6822 19.7244	-56.0226	20.7992	-56.2872 19.395	-56.9965
9	$E_{\rm B3LVP}$, $\eta_{\rm B3LVP}$	0.8379	0.0574 0.8691	0.0262 0.895	53 0.0874	0.6322	0.7868	0.4263 34	.2066	5 0.96	23 0.9623	0.9524	0.9448	0.9146	0.9785 0	.8313 0.0288	0.4662	0.6068	0.3403 4.3970	6.8094	0.7271	0.8956	0.4757 21.5021	-54.5061	21.7267	-51.5034 21.001	-54.4140
10	$E_{\rm BLYP}, E_{\rm BLYP}^{\rm LUMO}$	0.8301	0.0947 0.9060	0.0188 0.924	48 -0.0540	0.5359	0.8055	0.8933 49	.1816	5 0.83	16 0.8343	0.7910	0.9609	0.9123	0.9297 (.7032 0.0784	0.4316	0.6376	0.6994 3.1589	7.1369	3.1917	0.9305	0.6301 20.2387	-59.4732	20.4010	-57.3591 19.569	-62.9501
11	$E_{\rm BLVP}$, $\eta_{\rm BLVP}$	0.8245	0.0592 0.8546	0.0291 0.883	37 0.0804	0.6664	0.8185	0.5047 30	.3885	5 0.94	72 0.9471	0.9333	0.9382	0.9065	0.9692 (.7889 0.0423	0.4787	0.6107	0.4025 4.8852	7.3697	1.0189	0.8858	0.4507 21.0491	-54.0528	20.3026	-57.9467 20.114	-54.8191
12	$E_{B3LYP}, E_{B3LYP}^{LUMO}$	0.7951	0.1217 0.8960	0.0208 0.916	68 -0.0654	0.5636	0.8844	0.9713 44	.0727	5 0.80	4 0.8041	0.7529	0.9566	0.8958	0.9184 (.6891 0.0886	0.4432	0.6673	0.7978 3.4946	8.6038	3.7738	0.9269	0.6311 18.8755	-60.0352	18.6105	-60.7592 20.068	-60.2992
13	$E_{\rm HFX+LVP}, E_{\rm HFX+LVP}^{\rm LUMO}$	0.7112	0.1747 0.8573	0.0285 0.885	59 -0.0748	0.6601	1.0500	1.2549 31	.0498	1 0.67	35 0.6731	0.5875	0.9395	0.8541	0.8717 0	.6298 0.1230	0.5245	0.7907	1.1104 4.7930	12.1280	6.2993	0.8947	0.5419 20.5400	-56.4358	20.5850	-55.5373 19.996	58 -58.9030
14	$E_{\rm B3LVP}$, $\omega_{\rm B3LVP}$	0.7089	0.1819 0.8635	0.0273 0.890	08 -0.0707	0.6457	1.0542	1.1402 32	.6340	3 0.73	0.7301	0.6595	0.9423	0.8556	0.8901 0	.6459 0.1117	0.5089	0.7823	0.9923 4.5857	12.2256	5.2004	0.9024	0.4876 20.3042	-57.3648	20.4722	-56.7230 18.699	-60.2581
15	$E_{\rm BLYP}$, $\omega_{\rm BLYP}$	0.6329	0.2212 0.8176	0.0365 0.854	41 -0.0659	0.7465	1.1839	1.2882 23	.4074	1 0.65	60 0.6555	0.5654	0.9213	0.8150	0.8569 (.6026 0.1354	0.5849	0.8891	1.1097 6.1295	15.4177	6.6379	0.8668	0.3586 19.7015	-60.8864	21.2735	-54.7731 19.137	-60.2717

Models are arranged according to Q²¹coo values. Parameters are obtained through QSARNS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.agrar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S21. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using meta exchange-correlation functionals (M06, M06-L and M06-2X) based methods through activity sampling (ordered response) splitting method.

										N.																			
Model	Variables	$Q^2_{LOO} R$	$^{2}-Q^{2}_{LOO}$ R^{2}_{adj}	$R^2 - R^2_{adj} R^2$	$\Delta \mathbf{K}$	RMSE TR	RMSE _{CV}	RMSE EXT	F	Ext.OK Q ² _{F1}	Q_{F2}^{2}	Q_{F3}^2	$CCC_{\rm TR}$	CCC cv	CCC EXT	$\overline{r}_m^2 = \Delta r_m^2$	MAE TR	MAE CV	MAE EXT RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	Q^{2}_{LMO}	R ² _{Yscr}	Q^{2}_{Yscr}	R ² _{Xrand}	Q^{2}_{Xrand}	R ² _{Yrand}	$Q^2_{\rm Yrand}$
1	$E_{\rm M06}$, $\eta_{ m M06}$	0.9376	0.0294 0.9539	0.0132 0.9671	0.0922	0.3856	0.5308	0.8451	73.4735	4 0.758	4 0.754	6 0.8419	0.9833	0.9681	0.8524 0	.5745 0.195	4 0.306	0.4597	0.6485 1.1893	2.2536	4.2849	0.9665	0.4282	27.7949	-111.7891	28.2131	-109.2969	28.3554	-106.8579
2	$E_{ m M06-L}$, $\eta_{ m M06-L}$	0.9338	0.0322 0.9523	0.0136 0.966	0.0992	0.3922	0.5469	0.901	70.9336	3 0.725	3 0.721	0.8203	0.9827	0.966	0.8365 0	.5489 0.210	2 0.312	0.4754	0.6781 1.2304	2.393	4.8705	0.9665	0.4517	27.9991	-103.9355	29.1644	-103.9607	29.0461	-98.2654
3	$E_{\rm M06-2X}$, $\eta_{\rm M06-2X}$	0.9255	0.0391 0.9503	0.0142 0.9645	0.0812	0.4004	0.5803	0.8164	67.9586	4 0.774	5 0.77	0.8525	0.9819	0.9618	0.8638 0	.5971 0.182	7 0.3433	0.5338	0.622 1.2824	2.6937	3.9987	0.9667	0.4467	29.4742	-94.3226	29.123	-106.5453	28.8858	-95.8147
4	$E_{M06-2X}, E_{M06-2X}^{HOMO}$	0.9154	0.0488 0.9498	0.0143 0.9642	0.3813	0.4024	0.6182	0.6584	67.2372	5 0.853	3 0.851	1 0.9041	0.9817	0.9569	0.9154 0	.7345 0.116	7 0.361	0.5729	0.5509 1.2956	3.0576	2.6008	0.9669	0.2947	28.3913	-94.96	28.2176	-107.765	29.0638	-90.382
5	E_{M06}, E_{M06}^{HOMO}	0.912	0.051 0.9482	0.0148 0.963	0.4472	0.409	0.6306	0.6381	65.03	5 0.862	2 0.860	0.9099	0.9811	0.9552	0.9221 0	.7564 0.108	2 0.3621	0.5745	0.5332 1.338	3.181	2.4428	0.9665	0.2437	29.3185	-89.4435	29.5409	-107.8017	28.1431	-92.6082
6	$E_{M06-L}, E_{M06-L}^{HOMO}$	0.9007	0.0589 0.9435	0.0161 0.9596	0.4873	0.4271	0.6698	0.6469	59.4245	5 0.858	4 0.8562	2 0.9074	0.9794	0.9497	0.9194	0.747 0.111	8 0.3755	0.598	0.537 1.4591	3.5886	2.5106	0.9630	0.3326	29.892	-84.3877	28.2755	-110.5739	28.6256	-90.1226
7	$E_{M06-2X}, \chi_{M06-2X}$	0.8869	0.0709 0.9409	0.0169 0.9578	0.0975	0.4367	0.7148	0.6766	56.7217	5 0.845	1 0.842	7 0.8987	0.9784	0.9432	0.9139 0	.7736 0.114	1 0.3855	0.6288	0.6009 1.5257	4.0872	2.7467	0.9620	0.0473	29.9173	-84.8367	28.1887	-108.8898	28.409	-90.3705
8	E _{M06} , X _{M06}	0.8653	0.0857 0.9314	0.0196 0.951	0.0841	0.4705	0.78	0.6957	48.5188	5 0.836	2 0.833	7 0.8929	0.9749	0.9327	0.9107 0	.7692 0.118	3 0.4241	0.6922	0.6077 1.771	4.8678	2.9044	0.9568	-0.1088	28.285	-87.7112	29.086	-105.774	28.0153	-87.1623
9	E _{M06-L} , X _{M06-L}	0.8644	0.0861 0.9306	0.0198 0.9504	0.0934	0.4732	0.7828	0.6626	47.9485	5 0.851	4 0.849	0.9028	0.9746	0.9325	0.9176 0	.7791 0.110	3 0.4172	0.6784	0.576 1.791	4.9021	2.6344	0.9569	0.0372	28.7003	-86.8684	29.0013	-107.4807	28.7019	-85.8066
10	$E_{M06-L}, E_{M06-L}^{LUMO}$	0.7279	0.2013 0.9009	0.0283 0.9292	-0.0166	0.5655	1.1087	0.873	32.8217	5 0.742	1 0.738	1 0.8313	0.9633	0.8789	0.8602 0	.6618 0.080	3 0.4757	0.8531	0.7203 2.558	9.8346	4.5731	0.9414	-0.7682	27.9867	-100.0206	29.8237	-104.964	27.5712	-98.7785
11	$E_{\rm M06-2X}$, $\omega_{\rm M06-2X}$	0.7232	0.2113 0.9083	0.0262 0.9345	-0.0224	0.544	1.1183	0.9597	35.6573	1 0.688	4 0.683	5 0.7961	0.9661	0.8781	0.834 0	.6064 0.080	5 0.4353	0.8082	0.8368 2.3679	10.0041	5.5256	0.9503	-0.7994	28.4668	-96.7516	29.2101	-104.6621	29.1888	-93.7139
12	$E_{\rm M06}$, $\omega_{\rm M06}$	0.7146	0.2 0.8805	0.0342 0.9146	-0.0158	0.621	1.1355	1.1443	26.7821	1 0.556	9 0.5	5 0.7101	0.9554	0.8719	0.7491 0	.4609 0.201	8 0.5243	0.937	0.9638 3.0856	10.3153	7.8571	0.9247	-0.7434	28.4578	-113.1536	29.5066	-103.8563	28.8376	-111.896
13	$E_{\rm M06-L}$, $\omega_{\rm M06-L}$	0.6956	0.2123 0.871	0.0368 0.9079	-0.0152	0.6451	1.1727	1.2723	24.642	0 0.452	3 0.443	7 0.6417	0.9517	0.8692	0.6739 0	.3532 0.2	5 0.5378	0.9653	1.0343 3.3289	11.0024	9.7132	0.9141	-0.9541	29.4002	-132.8891	29.0162	-108.4973	28.6865	-134.2754
14	E_{M06}, E_{M06}^{LUMO}	0.6909	0.2308 0.8904	0.0313 0.9217	-0.0185	0.5948	1.1817	1.005	29.42	1 0.658	2 0.6529	9 0.7764	0.9592	0.8644	0.8114 0	.5658 0.146	2 0.5068	0.9364	0.8591 2.8306	11.1708	6.0607	0.9357	-1.1518	28.0177	-106.0502	27.4887	-113.4558	29.3138	104.1459
15	$E_{M06-2X}, E_{M06-2X}^{LUMO}$	0.607	0.319 0.8963	0.0296 0.926	-0.0247	0.5784	1.3325	1.0272	31.2611	1 0.64	3 0.637	5 0.7665	0.9616	0.8405	0.8049 0	.5513 0.090	1 0.472	0.9372	0.8735 2.6762	14.2045	6.3304	0.9429	-0.9509	29.6514	-103.5237	30.5324	-101.0151	26.6299	-110.496

Models are arranged according to Q²100 values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramutica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.agarin).

 R^2_{adi} adjusted R^2

N. Ext. OK Number of external validation parameters meeting threshold values

Table S22. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using meta exchange-correlation
functionals (M06, M06-L and M06-2X) based methods through 30% (random) splitting method.

$SS_{\text{TR}} PRESS_{\text{CV}} PRESS_{\text{EXT}} R^2_{\text{LMO}} Q^2_{\text{LMO}} R^2_{\text{Yscr}} Q^2_{\text{Yscr}} R^2_{\text{Xrand}} Q^2_{\text{Xrand}} R^2_{\text{Yrand}} Q^2_{\text{Yrand}}$
3.7267 8.4085 1.061 0.9225 0.4249 20.7231 -57.8864 19.7506 -57.2044 19.9462 -60.7468
3.6894 8.679 0.3845 0.9236 0.6483 20.2452 -57.6463 19.5393 -57.3815 19.6521 -57.8741
3.7306 8.7384 0.4988 0.9238 0.6750 19.8096 -57.7607 20.4369 -56.3584 19.124 -60.238
3.8732 8.9288 0.8489 0.9196 0.4544 20.0443 -58.6461 20.2271 -57.4871 19.5866 -59.1815
3.8346 9.1571 0.3043 0.9199 0.5766 20.2852 -56.762 20.2144 -56.5654 19.9734 -57.6441
4.1729 9.3311 0.8947 0.9132 0.4133 20.2397 -59.3655 20.3822 -57.6207 20.1287 -59.5271
5.5598 12.2811 2.127 0.8577 0.0407 20.0714 -61.6787 20.5407 -54.9415 20.3017 -61.3724
5.994 12.5874 0.3834 0.8729 0.3548 20.2079 -56.909 20.4296 -55.1677 19.4959 -58.4826
5.1471 12.8713 0.5873 0.8679 0.4637 20.5301 -55.4222 18.9807 -59.4511 20.5426 -56.2351
5.9906 13.6894 1.4697 0.8481 0.3388 19.0538 -70.3668 20.0604 -58.4087 21.0157 -65.4341
6.9787 14.7354 1.007 0.8519 0.3739 19.4985 -61.362 19.7692 -56.9152 20.278 -58.6698
8.8362 18.9564 1.3625 0.8152 0.0829 20.5617 -63.9972 19.6951 -58.4899 20.5158 -65.3048
9.2626 20.5485 2.1431 0.8016 -0.0577 20.0308 -63.4254 19.6596 -57.2943 20.2048 -64.3493
9.8742 20.806 1.5461 0.7869 -0.2663 20.0267 -62.0108 19.7598 -57.9131 19.9072 -61.7964
<u>2.0607</u> 29.3461 1.8297 0.7490 -0.5231 19.9278 -59.3158 20.769 -55.7784 20.516 -58.0956
14.071 14.075 0.307 0.0378 0.0338 19.0354 19.0467 10.301 19.0417 10.301 59.0411 10.301 10.301 10.3011 10.3011 10.3011 10.3011 10.3011 10.3011 10.3011 10.3011 10.3011 10.3011

Models are arranged according to Q²_{LOO} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S23. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-correlation (CORR(HFX+LYP), CORR(B1YP), CORR(B1YP)) based methods through activity sampling (ordered response) splitting method.

											N.																						
Model	Variables	$Q_{LOO}^2 R$	$2^2 - Q^2_{\text{LOO}} = R^2_{\text{adj}}$	$R^2 - R^2_{adj}$	R^2	∆K RMS	E _{TR} RM	ISE _{CV} R	MSE EXT	F	Ext.OK	Q_{F1}^{2}	Q_{F2}^{2}	Q_{F3}^{2}	CCC TR	CCC cv	CCC EXT	$\bar{r}_m^2 = \Delta$	$r_m^2 M_c$	AE _{TR} M	AAE CV	MAE EXT	RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	Q^{2}_{LMO}	R ² _{Yscr}	Q^{2}_{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q ² _{Yrand}
1	$E_{\text{CORR(B3LVP)}}, E_{\text{CORR(B3LVP)}}^{\text{HOMO}}$	0.7316	0.0638 0.7759	0.0195	0.7954 0	.2918 0.8	8486	0.9720	0.6796	40.8131	5	0.8194	0.8164	0.8687	0.8860	0.8537	0.8979	0.7899 0.0	0741 0).6628	0.7601	0.5374	17.2837	22.6726	10.1623	0.7983	0.7184	8.5818	-19.8806	8.8958	-19.6206	8.5980	-20.3638
2	$E_{\text{CORR(B3LYP)}}$, $\eta_{\text{CORR(B3LYP)}}$	0.7140	0.0662 0.7593	0.0209	0.7802 0	.0759 0.8	8795	1.0033	0.8843	37.2770	1	0.6942	0.6892	0.7778	0.8765	0.8433	0.8465	0.6090 0.0	0 8660	0.6903	0.7933	0.7837	18.5629	24.1581	17.2038	0.7875	0.6954	8.7341	-20.7888	9.2896	-19.1411	8.7284	-20.5103
3	$E_{\text{CORR}(\text{B3LVP})}, \omega_{\text{CORR}(\text{B3LVP})}$	0.7074	0.0691 0.7552	0.0213	0.7764 0	.2506 0.8	8870	1.0148	0.7811	36.4691	4	0.7614	0.7575	0.8266	0.8742	0.8391	0.8456	0.6957 0.3	1080 0	0.6886	0.7902	0.6194	18.8822	24.7146	13.4224	0.7838	0.6829	8.6179	-20.1660	8.7765	-19.7794	8.9349	-19.7431
4	$E_{\text{CORR}(\text{B3LYP})}, \chi_{\text{CORR}(\text{B3LYP})}$	0.6148	0.0941 0.6812	0.0277	0.7090 0	.2006 1.0	0121	1.1643	0.8699	25.5776	3	0.7041	0.6992	0.7850	0.8297	0.7825	0.7957	0.6789 0.3	1158 0	0.8110	0.9302	0.6906	24.5826	32.5320	16.6488	0.7217	0.5871	8.7722	-20.3955	8.8063	-19.4989	8.3950	-20.6244
5	$E_{\text{CORR(HFX+LYP)}}, E_{\text{CORR(HFX+LYP)}}^{\text{HOMO}}$	0.5811	0.1030 0.6540	0.0301	0.6841 0	.2542 1.0	0545	1.2142	0.8869	22.7332	2	0.6924	0.6874	0.7765	0.8124	0.7608	0.8100	0.6760 0.0	0995 0).8953	1.0283	0.7326	26.6866	35.3827	17.3041	0.6978	0.5577	8.5996	-20.1505	8.6091	-19.9511	8.9524	-19.3428
6	$E_{\text{CORR(BLYP)}}$, $\eta_{\text{CORR(BLYP)}}$	0.5613	0.1018 0.6310	0.0321	0.6631 0	.2905 1.0	0889	1.2426	1.0263	20.6632	1	0.5881	0.5813	0.7007	0.7974	0.7454	0.7027	0.5875 0.0	0836 0	0.9167	1.0454	0.8590	28.4592	37.0588	23.1742	0.6749	0.3861	8.7603	-20.7541	8.7057	-19.9187	8.5276	-21.3903
7	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{HOMO}}$	0.5598	0.1032 0.6310	0.0321	0.6631 0	.3283 1.0	0889	1.2446	1.0114	20.6643	1	0.6000	0.5934	0.7093	0.7974	0.7445	0.7104	0.5989 0.3	1029 0	0.9138	1.0445	0.8385	28.4582	37.1781	22.5061	0.6737	0.5409	9.0654	-20.4579	8.5227	-20.1933	8.8310	-21.1491
8	$E_{\text{CORR(BLYP)}}, \chi_{\text{CORR(BLYP)}}$	0.5570	0.1053 0.6302	0.0322	0.6624 0	.3680 1.0	0900	1.2486	1.0002	20.6001	1	0.6088	0.6024	0.7158	0.7969	0.7425	0.7170	0.6057 0.3	1143 0	0.9169	1.0527	0.8168	28.5170	37.4144	22.0082	0.6747	0.5176	8.7120	-21.2602	9.1549	-19.2641	8.4688	-21.1907
9	$E_{\text{CORR(HFX+LVP)}}, \chi_{\text{CORR(HFX+LVP)}}$	0.5504	0.1192 0.6381	0.0315	0.6696 0	.0980 1.0	0783	1.2579	0.9148	21.2803	2	0.6728	0.6674	0.7622	0.8021	0.7413	0.7855	0.6690 0.0	0379 0	0.8921	1.0368	0.7653	27.9066	37.9781	18.4107	0.6846	0.5373	8.6560	-20.1316	8.6377	-19.7756	8.6007	-20.4133
10	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{LUMO}}$	0.5354	0.1162 0.6184	0.0332	0.6516 0	.0777 1.1	1073	1.2787	1.0257	19.6386	1	0.5886	0.5818	0.7011	0.7891	0.7306	0.7090	0.5923 0.0	0329 0	0.9385	1.0804	0.8319	29.4267	39.2400	23.1462	0.6662	0.5254	8.4540	-20.8180	9.1036	-19.1342	8.8774	-19.8428
11	$E_{\text{CORR}(\text{HFX+LYP})}, \eta_{\text{CORR}(\text{HFX+LYP})}$	0.5315	0.1260 0.6249	0.0326	0.6575 0	.2027 1.0	0978	1.2840	1.0298	20.1608	0	0.5854	0.5785	0.6987	0.7934	0.7325	0.7101	0.5982 0.0	0067 0	0.9229	1.0718	0.8315	28.9255	39.5683	23.3294	0.6733	0.5461	8.6228	-19.8037	8.7390	-19.6208	8.7043	-20.0552
12	$E_{CORR(HFX+LYP)}, E_{CORR(HFX+LYP)}^{LUMO}$	0.5299	0.1298 0.6272	0.0324	0.6596 0	.1022 1.0	0945	1.2863	0.9869	20.3487	1	0.6192	0.6129	0.7232	0.7949	0.7300	0.7332	0.6128 0.0	0553 0	0.9256	1.0808	0.8134	28.7494	39.7093	21.4278	0.6779	0.5120	8.6127	-20.4149	8.2008	-20.5684	8.8164	-19.9156
13	$E_{\text{CORR(B3LYP)}}, E_{\text{CORR(B3LYP)}}^{\text{LUMO}}$	0.4928	0.1407 0.5987	0.0349	0.6336 0	.0198 1.1	1356	1.3360	1.0909	18.1550	0	0.5347	0.5270	0.6618	0.7757	0.6984	0.6598	0.5239 0.0	0790 0	0.9535	1.1156	0.8731	30.9503	42.8382	26.1821	0.6513	0.4949	8.2016	-21.3063	8.7201	-19.9390	8.9866	-20.4215
14*	$E_{\text{CORR(BLYP)}}, \omega_{\text{CORR(BLYP)}}$	0.6948	0.0736 0.7412	0.0272	0.7684 0	.2315 0.7	7479	0.8587	0.9434	28.2024	0	0.4828	0.4820	0.6316	0.8690	0.8315	0.7161	0.4592 0.0	0476 0	0.6525	0.7582	0.7615	11.1881	14.7457	16.0193	0.7702	0.6389	10.5104	-25.7058	11.1067	-23.6962	10.6530	-25.2916
15*	$E_{\text{CORR}(\text{HFX+LYP})}, \omega_{\text{CORR}(\text{HFX+LYP})}$	0.6213	0.1061 0.6970	0.0303	0.7273 0	.1896 0.9	9478	1.1170	0.9486	24.0054	1	0.6616	0.6616	0.7269	0.8421	0.7833	0.7993	0.5223 0.	1645 0	0.7354	0.8645	0.7866	18.8643	26.2012	17.9951	0.7345	0.5720	10.0636	-23.0298	10.1334	-23.2785	9.5411	-23.6776

*Computed using data set represented with (c) and (b) respectively in Supporting Information Table S3.

Models are arranged according to Q^2_{100} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S24. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-correlation (CORR(HFX+LYP), CORR(B1YP)) based methods through 30% (random) splitting method.

									N.																					
Model	Variables	Q^{2}_{LOO} R	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2$	$\Delta K RM$	ISE TR RM	ASE CV I	RMSE EXT F	Ext.OK	Q_{F1}^2	Q^{2}_{F2}	$Q_{F3}^2 c$	CCC TR (CCC cv C	CCC EXT	$\overline{r}_m^2 = \Delta r_p$	MAE TE	MAE CV	MAE _{EXT} R	SS TR P	PRESS CV P	RESS EXT	R^{2}_{LMO}	Q^2_{LMO} I	R ² Yscr	Q ² _{Vscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\text{CORR}(\text{B3LVP})}$, $\omega_{\text{CORR}(\text{B3LVP})}$	0.7300	0.0423 0.7576	0.0147 0.7723	0.4161	0.8490	0.9245	0.5696 52.563	2 5	0.8574	0.8463 0).8975 (0.8715	0.8495	0.9117 0	0.8230 0.04	89 0.7074	0.7740	0.4538 24	4.5056	29.0577	3.8934	0.7767	0.7037 5	.8120	-13.7357	6.1898	-13.0184	6.2578	-13.0349
2	$E_{\text{CORR}(\text{B3LYP})}, \eta_{\text{CORR}(\text{B3LYP})}$	0.7285	0.0522 0.7666	0.0141 0.7807	0.1350	0.8331	0.9270	0.8462 55.182	5 1	0.6852	0.6608 0).7737 (0.8769	0.8500	0.7921 0	0.5166 0.14	56 0.7054	0.7806	0.7110 23	3.5975	29.2155	8.5931	0.7865	0.7093 6	.0928	-13.6483	6.1851	-13.0131	6.0133	-13.4949
3	$E_{\text{CORR}(\text{B3LYP})}, E_{\text{CORR}(\text{B3LYP})}^{\text{HOMO}}$	0.7269	0.0524 0.7650	0.0142 0.7793	0.2428	0.8358	0.9298	0.6599 54.723	2 5	0.8085	0.7937 0	0.8624	0.8759	0.8493	0.8739 0	0.6864 0.08	80 0.698	0.7739	0.5388 23	3.7518	29.3930	5.2259	0.7819	0.7144 6	.0064	-13.7885	6.2754	-12.9220	5.7498	-13.8372
4	$E_{\text{CORR}(\text{B3LVP})}$, $\chi_{\text{CORR}(\text{B3LVP})}$	0.6892	0.0502 0.7226	0.0168 0.7394	0.3932	0.9082	0.9918	0.6894 43.973	5	0.7911	0.7748 0).8498 (0.8502	0.8237	0.8616 0	0.7337 0.08	15 0.7519	0.8230	0.5025 28	8.0449	33.4434	5.7031	0.7411	0.6684 6	.3193	-13.0769	6.1666	-12.9331	6.5960	-12.6326
5	$E_{\text{CORR(BLYP)}}, \chi_{\text{CORR(BLYP)}}$	0.6755	0.0506 0.7085	0.0177 0.7261	0.4132	0.9310	1.0134	0.8213 41.100	2	0.7034	0.6804 0	0.7868	0.8414	0.8140	0.7893 0	0.6028 0.11	61 0.765	0.8373	0.6626 29	9.4686	34.9151	8.0954	0.7276	0.6541 6	.0782	-13.7373	6.2074	-13.0593	5.7923	-14.8742
6	$E_{\text{CORR(BLVP)}}$, $\eta_{\text{CORR(BLVP)}}$	0.6755	0.0480 0.7056	0.0178 0.7235	0.3482	0.9355	1.0135	0.8506 40.551	3 1	0.6819	0.6572 0	0.7714 (0.8395	0.8135	0.7705 0	0.6133 0.11	32 0.7713	0.8390	0.7241 29	9.7572	34.9238	8.6831	0.7262	0.5960 5	.8767	-14.3557	6.2288	-12.8752	6.1137	-14.3599
7	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{HOMO}}$	0.6748	0.0493 0.7063	0.0178 0.7241	0.3775	0.9344	1.0145	0.8271 40.6856	5 1	0.6993	0.6760 0).7839 (0.8400	0.8133	0.7833 (0.6153 0.11	28 0.770	0.8403	0.6860 29	9.6860	34.9897	8.2082	0.7241	0.6025 5	.9723	-14.5012	6.0097	-13.2461	6.0453	-13.9386
8	$E_{\text{CORR}(\text{HFX+LYP})}, E_{\text{CORR}(\text{HFX+LYP})}^{\text{HOMO}}$	0.6746	0.0551 0.7123	0.0174 0.7297	0.2939	0.9249	1.0148	0.7243 41.8418	3 4	0.7693	0.7514 0	0.8342	0.8437	0.8145	0.8428 0	0.7305 0.06	14 0.7938	0.8716	0.5633 29	9.0875	35.0146	6.2960	0.7310	0.6591 5	.9475	-13.3280	6.3815	-12.7102	6.1515	-13.2789
9	$E_{\text{CORR}(\text{HFX+LYP})}, \chi_{\text{CORR}(\text{HFX+LYP})}$	0.6604	0.0629 0.7055	0.0179 0.7233	0.3913	0.9358	1.0367	0.7951 40.517	4 4	0.7220	0.7005 0	0.8002	0.8394	0.8046	0.8175 0	0.6626 0.01	37 0.7752	0.8547	0.6367 29	9.7750	36.5435	7.5869	0.7271	0.6611 6	6.0901	-13.2748	6.1081	-13.2016	5.8029	-13.6337
10	$E_{\text{CORR(HFX+LVP)}}, \eta_{\text{CORR(HFX+LVP)}}$	0.6595	0.0555 0.6966	0.0184 0.7150	0.2005	0.9497	1.0381	0.8081 38.891	5 2	0.7129	0.6907 0).7937 (0.8338	0.8042	0.7959 0	0.6426 0.10	59 0.8080	0.8866	0.6448 30	0.6651	36.6404	7.8356	0.7217	0.6253 6	.2968	-13.0442	6.1381	-13.0603	5.8093	-13.5624
11	$E_{\text{CORR}(\text{HFX+LVP})}, E_{\text{CORR}(\text{HFX+LVP})}^{\text{LUMO}}$	0.6545	0.0624 0.6986	0.0183 0.7169	0.2128	0.9466	1.0457	0.8553 39.2459) 1	0.6784	0.6534 0	0.7689	0.8351	0.8007	0.7868	0.6044 0.04	31 0.7734	0.8536	0.6889 30	0.4667	37.1805	8.7786	0.7218	0.6418 6	6.0580	-13.5194	5.6578	-13.6882	5.9416	-13.4927
12	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{LUMO}}$	0.6469	0.0627 0.6909	0.0187 0.7097	0.1624	0.9586	1.0571	0.9293 37.8858	3 1	0.6204	0.5909 0).7272 (0.8302	0.7956	0.7566	0.5318 0.08	41 0.7960	0.8753	0.7793 31	1.2429	37.9922	10.3624	0.7145	0.6371 6	.3975	-12.7487	6.2690	-13.1105	6.1649	-13.1672
13	$E_{\text{CORR}(\text{B3LYP})}, E_{\text{CORR}(\text{B3LYP})}^{\text{LUMO}}$	0.6030	0.0936 0.6770	0.0196 0.6966	0.0659	0.9800	1.1209	1.0021 35.580	6 0	0.5585	0.5243 0	0.6827	0.8211	0.7683	0.6961 0	0.4339 0.15	28 0.823	0.9261	0.8117 32	2.6529	42.7216	12.0501	0.7078	0.6061 5	.9775	-13.6795	6.0562	-13.3007	5.6018	-14.7448
14*	$E_{\text{CORR}(\text{BLVP})}$, $\omega_{\text{CORR}(\text{BLVP})}$	0.6766	0.0585 0.7120	0.0230 0.7351	0.0959	0.7445	0.8226	1.0635 31.9059	9 0	0.4638	0.4588 0).4594 (0.8473	0.8162	0.5607 0	0.4721 0.13	55 0.6354	0.7097	0.8428 14	4.4105	17.5914	12.4405	0.7351	0.6273 7	.9407	-18.9697	8.4925	-17.3485	7.5899	-18.8297
15*	$E_{\text{CORR}(\text{HFX+LYP})}, \omega_{\text{CORR}(\text{HFX+LYP})}$	0.6627	0.0640 0.7057	0.0210 0.7267	0.2099	0.8787	0.9762	1.0645 34.572	, 0	0.6648	0.6607 0).5989 (0.8417	0.8055	0.7905 (0.5912 0.13	70 0.6979	0.7778	0.9469 22	2.3911	27.6362	13.5990	0.7287	0.6295 7	.2501	-15.6239	7.1459	-15.8096	7.5236	-15.5867

*Computed using data set represented with (c) and (b) respectively in Supporting Information Table S3.

Models are arranged according to Q^2_{100} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S25. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-correlation (CORR(HFX+LYP), CORR(B1YP), CORR(B1YP)) based methods through activity sampling (ordered response) splitting method.

										N.																				
Model	Variables	Q^2_{LOO} k	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} = R^2$	$\Delta \mathbf{K}$	RMSE TR	RMSE _{CV}	RMSE EXT	F	Ext.OK	Q_{F1}^2	$Q^{2}_{F2} Q^{2}_{F2}$	F3 CCC TR	CCC cv	CCC EXT	\overline{r}_m^2	Δr_m^2	MAE TR	MAE CV	MAE EXT RSS TR	PRESS CV F	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO}$	R ² _{Yscr}	Q ² _{Yser} I	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\text{CORR}(\text{HFX+LYP})}, E_{\text{CORR}(\text{HFX+LYP})}^{\text{LUMO}}$	0.9857	0.006 0.9884	0.0033 0.991	7 0.1925	0.1967	0.2588	0.8696	300.0248	5	0.8305	0.8174 0.83	85 0.9959	0.9928	0.9236	0.834 0	0.0702	0.149	0.2045	0.7153 0.3095	0.5357	3.7814	0.9917	0.6673	30.568	-90.9253 2	28.6292	114.2375	26.0326	109.1877
2	$E_{\text{CORR}(\text{HFX+LYP})}, \chi_{\text{CORR}(\text{HFX+LYP})}$	0.969	0.0178 0.9815	0.0053 0.986	8 0.3371	0.2485	0.3808	0.6743	187.0138	5	0.8981	0.8902 0.90	0.9934	0.9845	0.9481	0.8655 0	0.0556	0.1921	0.3014	0.5028 0.4941	1.16	2.2737	0.9881	0.6725	31.3447	-86.6643 2	29.8416	102.8297	29.9057	-93.7522
3	$E_{\text{CORR}(\text{HFX+LYP})}$, $\eta_{\text{CORR}(\text{HFX+LYP})}$	0.9433	0.0255 0.9564	0.0125 0.968	8 0.1122	0.382	0.5152	1.1211	77.7319	4	0.7184	0.6965 0.73	16 0.9842	0.9717	0.8754	0.757	0.024	0.3003	0.4295	0.9603 1.1672	2.1235	6.2839	0.9682	0.4754	29.0884	104.0019 2	28.1578	112.7071	27.9369	108.8094
4	$E_{\text{CORR(B3LYP)}}, E_{\text{CORR(B3LYP)}}^{\text{HOMO}}$	0.9418	0.0333 0.9652	0.01 0.975	1 0.1537	0.3413	0.522	0.4817	97.9877	5	0.948	0.944 0.95	04 0.9874	0.9704	0.9708	0.8963 0	0.0363	0.2944	0.4691	0.3333 0.9319	2.1801	1.1602	0.9768	0.4862	28.8528	102.3972 3	30.4638	-96.361	28.4378	104.8297
5	$E_{CORR(HFX+LVP)}, E_{CORR(HFX+LVP)}^{HOMO}$	0.9263	0.0465 0.9619	0.0109 0.972	8 0.3776	0.3567	0.5875	0.6179	89.4806	5	0.9144	0.9078 0.91	.85 0.9862	0.9631	0.9556	0.8738 0	0.0512	0.3036	0.5149	0.4609 1.0181	2.7617	1.9091	0.9764	0.3271	29.4168	-98.4941 2	29.0534	105.5568	29.2124	-100.887
6	$E_{\text{CORR}(\text{B3LYP})}, \omega_{\text{CORR}(\text{B3LYP})}$	0.9235	0.0485 0.9608	0.0112 0.97	2 0.4051	0.3621	0.5986	0.4235	86.7637	5	0.9598	0.9567 0.96	0.9858	0.9617	0.9782	0.9267	0.027	0.3116	0.5309	0.3087 1.0491	2.8669	0.8967	0.9754	0.1582	28.5195	100.3837 2	29.2347	107.8823	27.8915	103.8511
7	$E_{\text{CORR(BLYP)}}, \chi_{\text{CORR(BLYP)}}$	0.9017	0.0679 0.9573	0.0122 0.969	5 0.1141	0.3777	0.6786	0.6948	79.5624	5	0.8918	0.8834 0.89	69 0.9845	0.9495	0.9475	0.8864 0	0.0064	0.3323	0.6047	0.5562 1.1412	3.684	2.4139	0.9743	0.2572	28.0261	178.0529 2	29.0357	106.6961	30.4532	173.2299
8	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{HOMO}}$	0.8987	0.0693 0.9551	0.0128 0.967	9 0.2028	0.3874	0.6887	0.7105	75.4813	5	0.8869	0.8781 0.89	0.9837	0.9479	0.9434	0.8627 0	0.0584	0.3559	0.6309	0.5702 1.2009	3.7949	2.5241	0.9727	0.2441	29.9875	122.7008 2	28.5371	-105.595	29.9511	128.4131
9	$E_{\text{CORR}(\text{B3LVP})}$, $\chi_{\text{CORR}(\text{B3LVP})}$	0.8922	0.0677 0.9439	0.016 0.959	9 0.4292	0.4332	0.7105	0.5993	59.8744	5	0.9195	0.9133 0.92	33 0.9795	0.9451	0.9507	0.8919 0	0.0462	0.3467	0.5743	0.5298 1.5014	4.0384	1.7958	0.9659	0.0786	29.5733	-92.1222 2	27.6814	106.7811	29.5312	-96.0842
10	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{LUMO}}$	0.8744	0.0887 0.9485	0.0147 0.963	2 0.0589	0.4151	0.7667	0.6419	65.4247	5	0.9077	0.9005 0.9	0.9813	0.9357	0.9553	0.9051 0	0.0075	0.3798	0.6793	0.5335 1.3787	4.703	2.0599	0.9688	0.0210	28.7581	113.3556	29.682	-95.7111	28.6299	120.5318
11	$E_{\text{CORR}(\text{B3LYP})}$, $\eta_{\text{CORR}(\text{B3LYP})}$	0.8549	0.1049 0.9436	0.0161 0.959	7 0.087	0.4343	0.8244	0.7223	59.5691	5	0.8831	0.874 0.88	86 0.9794	0.9286	0.9411	0.8321 0	0.0593	0.3995	0.6991	0.5685 1.5087	5.437	2.6083	0.9649	0.0658	26.7928	100.2076	28.451	108.2405	30.1534	-89.2488
12	$E_{\text{CORR(B3LYP)}}, E_{\text{CORR(B3LYP)}}^{\text{LUMO}}$	0.8514	0.0777 0.9007	0.0284 0.929	1 0.0695	0.5762	0.8342	0.8242	32.7528	5	0.8478	0.836 0.85	49 0.9632	0.9242	0.9193	0.7774 0	0.0885	0.4695	0.7105	0.5564 2.6564	5.5676	3.3966	0.9305	-0.2365	28.5725	-93.5056 2	29.2535	101.2577	29.4615	-86.6797
13	$E_{\text{CORR(BLYP)}}$, $\eta_{\text{CORR(BLYP)}}$	0.8419	0.1027 0.9224	0.0222 0.944	6 0.0223	0.5094	0.8603	0.6913	42.6178	5	0.8929	0.8846 0.89	0.9715	0.9215	0.9434	0.8404 0	0.0642	0.4344	0.7419	0.497 2.0756	5.9212	2.3897	0.9488	-0.1774	27.8207	-96.2285 2	27.5899	119.1871	28.3649	-93.9013
14**	$E_{\text{CORR}(\text{HFX+LYP})}, \omega_{\text{CORR}(\text{HFX+LYP})}$	0.7610	0.1867 0.9303	0.0174 0.947	7 0.0998	0.4869	1.0410	0.9304	54.3871	3	0.7027	0.7026 0.80	0.9732	0.8728	0.8178	0.5004 0	0.2375	0.4152	0.7658	0.6919 2.1333	9.7535	5.1935	0.9575	-0.9896	24.5289	-91.8275 2	25.6803	-80.3081	25.1231	-90.1154
15**	$E_{\text{CORR}(\text{BLYP})}, \omega_{\text{CORR}(\text{BLYP})}$	0.7350	0.1805 0.8732	0.0423 0.915	5 0.1149	0.5588	0.9895	0.8160	21.6589	1	0.5787	0.5754 0.81	.98 0.9559	0.8838	0.7169	0.6378 0).1582	0.5075	0.9460	0.6441 2.1861	6.8536	3.3292	0.9129	-17.3882	32.9202	204.3347 3	33.6834	155.1932	31.6185	201.5612

**Computed using data set represented with (d) and (e) respectively in Supporting Information Table S4.

Models are arranged according to Q²_{LOD} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R^2_{uli} adjusted R^2

N. Ext.OK Number of external validation parameters meeting threshold values

Table S26. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-correlation (CORR(HFX+LYP), CORR(B1YP), CORR(B1YP)) based methods through 30% (random) splitting method.

									1 v .																					
Model	Variables	Q^{2}_{100}	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj} R^2 \Delta K$	RMSE TR	RMSE CV	RMSE EXT	F	Ext.OK Q ² _{F1}	Q_{F2}^{2}	Q^2_{F3}	$\textit{CCC}_{\mathrm{TR}}$	CCC_{cv}	$CCC_{\rm EXT}$	\overline{r}_m^2	Δr_m^2	MAE _{TR}	MAE CV	MAE EXT R	SS TR PRE	ESS CV P	RESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO}$	R ² _{Yscr}	Q ² _{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q ² _{Yrand}
1	$E_{\text{CORR}(\text{HFX+LVP})}, \chi_{\text{CORR}(\text{HFX+LVP})}$	0.8736	0.0569 0.9151	0.0154 0.9305 0.4397	0.5149	0.6944	0.7580	60.2690	5 0.880	8 0.8807	0.8494	0.9640	0.9341	0.9349	0.7162	0.0843	0.4128	0.5658	0.5025 3	1815 5	5.7858	2.2984	0.9335	0.6838	17.6814	-49.8828	17.5334	-50.6731	18.9238	-47.8202
2	$E_{\text{CORR}(\text{HFX+LVP})}, E_{\text{CORR}(\text{HFX+LVP})}^{\text{LUMO}}$	0.8562	0.0687 0.9082	0.0167 0.9249 0.3625	0.5353	0.7406	0.7399	55.4195	5 0.886	5 0.8864	0.8565	0.9610	0.9278	0.9382	0.7201	0.0803	0.4548	0.6264	0.4428 3	4390 6	6.5826	2.1896	0.9275	0.6527	17.8824	-48.5402	17.7493	-49.9506	18.1734	-49.9844
3	$E_{\text{CORR}(\text{B3LYP})}$, $\omega_{\text{CORR}(\text{B3LYP})}$	0.8472	0.0644 0.8919	0.0196 0.9116 0.2910	0.5808	0.7636	0.6637	46.4003	5 0.908	6 0.9086	0.8845	0.9538	0.9214	0.9517	0.7748	0.0609	0.4535	0.6037	0.4006 4	0483 6	6.9971	1.7623	0.9138	0.6126	17.3479	-50.7034	18.5792	-49.5018	18.3787	-49.7993
4	$E_{\text{CORR}(\text{HFX+LYP})}, \eta_{\text{CORR}(\text{HFX+LYP})}$	0.8424	0.0617 0.8828	0.0213 0.9041 0.1990	0.6048	0.7755	0.8583	42.4461	5 0.847	2 0.8471	0.8069	0.9497	0.9211	0.9217	0.7318	0.0912	0.4896	0.6551	0.5769 4	3893 7	7.2160	2.9467	0.9039	0.5415	17.0629	-57.3638	17.1314	-51.2724	19.0504	-53.6329
5	$E_{\text{CORR}(\text{B3LVP})}, \eta_{\text{CORR}(\text{B3LVP})}$	0.8420	0.0859 0.9119	0.0160 0.9279 0.0831	0.5245	0.7764	0.9447	57.9217	5 0.814	9 0.8148	0.7661	0.9626	0.9207	0.9084	0.6759	0.0979	0.4262	0.5994	0.7431 3	3011 7	7.2333	3.5701	0.9322	0.6899	18.2071	-51.2352	19.0721	-48.8447	18.3919	-50.2135
6	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{LUMO}}$	0.8370	0.0731 0.8901	0.0200 0.9101 0.1148	0.5858	0.7887	0.7214	45.5462	5 0.892	1 0.8920	0.8636	0.9529	0.9150	0.9447	0.7730	0.0656	0.4862	0.6588	0.5139 4	1174 7	7.4637	2.0817	0.9123	0.6062	18.8179	-49.4097	20.2050	-46.1911	17.5200	-49.9480
7	$E_{\text{CORR(BLYP)}}, \chi_{\text{CORR(BLYP)}}$	0.8342	0.0798 0.8949	0.0191 0.9140 0.2734	0.5729	0.7955	0.7951	47.8096	5 0.868	9 0.8688	0.8343	0.9551	0.9137	0.9313	0.7239	0.0836	0.4589	0.6340	0.5142 3	9393 7	7.5933	2.5287	0.9191	0.6078	18.3289	-48.8464	19.2725	-45.6722	17.8342	-49.6133
8	$E_{\text{CORR(BLYP)}}, \eta_{\text{CORR(BLYP)}}$	0.8261	0.0734 0.8772	0.0223 0.8995 0.0519	0.6192	0.8146	0.7560	40.2908	5 0.881	5 0.8814	0.8502	0.9471	0.9122	0.9403	0.7927	0.0692	0.5114	0.6884	0.5408 4	6005 7	7.9622	2.2862	0.9012	0.5336	18.3965	-54.0540	17.9292	-52.1666	19.6010	-49.5501
9	$E_{\text{CORR}(\text{B3LVP})}$, $\chi_{\text{CORR}(\text{B3LVP})}$	0.8183	0.0751 0.8697	0.0237 0.8934 0.3099	0.6377	0.8326	0.8291	37.7248	5 0.857	4 0.8573	0.8199	0.9437	0.9059	0.9229	0.7135	0.0959	0.4918	0.6516	0.4884 4	8801 8	8.3194	2.7496	0.8958	0.5219	16.0694	-54.0524	18.2200	-49.5382	17.6263	-49.5754
10	$E_{\text{CORR(B3LYP)}}, E_{\text{CORR(B3LYP)}}^{\text{LUMO}}$	0.8060	0.0821 0.8632	0.0249 0.8880 0.0948	0.6536	0.8604	1.0093	35.6954	5 0.788	8 0.7886	0.7331	0.9407	0.8972	0.8972	0.6949	0.1084	0.5492	0.7310	0.7251 5	1265 8	8.8845	4.0744	0.8888	0.4547	18.6311	-46.7816	17.5033	-50.1550	20.0132	-43.9804
11	$E_{\text{CORR(B3LYP)}}, E_{\text{CORR(B3LYP)}}^{\text{HOMO}}$	0.8058	0.1123 0.8999	0.0182 0.9181 0.1384	0.5590	0.8609	0.8133	50.4445	5 0.862	8 0.8627	0.8267	0.9573	0.9045	0.9270	0.6969	0.0909	0.4169	0.6025	0.5318 3	7503 8	8.8943	2.6455	0.9259	0.5918	17.8543	-50.3190	18.5740	-49.2757	18.4400	-48.8594
12	$E_{\text{CORR(BLYP)}}, E_{\text{CORR(BLYP)}}^{\text{HOMO}}$	0.7845	0.1178 0.8805	0.0217 0.9022 0.4019	0.6108	0.9069	0.8656	41.5279	5 0.844	6 0.8445	0.8036	0.9486	0.8917	0.9190	0.7048	0.0966	0.4817	0.6866	0.5659 4	4769 9	9.8695	2.9974	0.9094	0.5254	19.6301	-46.1700	18.0365	-49.6408	18.5387	-49.1631
13	$E_{\text{CORR}(\text{HFX+LVP})}, E_{\text{CORR}(\text{HFX+LVP})}^{\text{HOMO}}$	0.7022	0.1943 0.8735	0.0230 0.8965 0.1876	0.6285	1.0660	0.8352	38.9661	5 0.855	3 0.8552	0.8172	0.9454	0.8620	0.9246	0.7274	0.0902	0.5080	0.7665	0.5366 4	7407 13	3.6364	2.7904	0.9062	0.4129	18.7263	-56.1730	18.7885	-48.3759	18.2294	-56.0729
14**	$E_{\text{CORR}(\text{HFX+LYP})}, \omega_{\text{CORR}(\text{HFX+LYP})}$	0.8190	0.0585 0.8469	0.0306 0.8775 0.1449	0.6932	0.8426	0.7238	28.6553	5 0.866	9 0.8443	0.8665	0.9348	0.9038	0.9369	0.6714	0.0846	0.5140	0.6633	0.6290 5	2851 7	7.8104	2.0953	0.8720	0.1137	21.2369	-57.1164	18.6228	-59.5211	18.8275	-60.6302
15**	$E_{\text{CORR}(\text{BLVP})}, \omega_{\text{CORR}(\text{BLVP})}$	0.5313	0.3321 0.8087	0.0547 0.8634 0.1055	0.7011	1.2985	0.5013	15.7974	5 0.797	6 0.7966	0.9301	0.9267	0.8196	0.8790	0.7862	0.0722	0.5608	1.0192	0.4867 3	9321 13	3.4888	1.0051	0.8741	-16.8911	29.9140	-146.7222	29.3147	-111.0799	28.2766	-156.3253

**Computed using data set represented with (d) and (e) respectively in Supporting Information Table S4.

Models are arranged according to Q^2_{LOD} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.star.it).

R^{2}_{N} adjusted R^{2}

N. Ext.OK Number of external validation parameters meeting threshold values

Table 527. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-correlation (CORR(M06), CORR(M06-1), CORR(M06-2X)) based methods through activity sampling (ordered response) splitting method.

										IN.																				
Model	Variables	$Q^2_{LOO} R$	$2^2 \cdot Q^2_{\text{LOO}} = R^2_{\text{adj}}$	$R^2 - R^2_{adj} = R^2$	$\Delta \mathbf{K}$	RMSE TR	RMSE _{CV}	RMSE EXT	F	Ext.OK Q ² _F	$Q_{1}^{2}Q_{F2}^{2}$	Q_{F3}^2	CCC TR	CCC cv	$CCC_{EXT} = \overline{r}_m^2$	Δr_m^2	MAE TR	MAE CV	MAE EXT	RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	Q^2_{LMO} R	2 Yscr	Q ² _{Yser}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	$Q^2_{\rm Yrand}$
1	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{HOMO}}$	0.7274	0.0792 0.7882	0.0184 0.80	6 0.3152	0.8304	0.9859	0.8642	43.7948	3 0.71	61 0.7124	0.7906	0.893	0.8545	0.8111 0.59	82 0.1386	0.6279	0.7393	0.7094	16.5513	23.3294	15.6824	0.8157	0.7222 8	5983 -	20.3654	8.4089	-20.2828	8.8788	-20.0677
2	$E_{\text{CORR}(M06)}, E_{\text{CORR}(M06)}^{\text{HOMO}}$	0.723	0.0856 0.7904	0.0182 0.80	0.3042	0.826	0.9938	0.8062	44.3782	3 0.75	29 0.7497	0.8177	0.8942	0.8529	0.8397 0.62	98 0.1259	0.6554	0.777	0.6464	16.3754	23.7044	13.6486	0.8191	0.7132 8	5041 -	20.9155	8.4297	-19.9952	8.3211	-21.124
3	$E_{\text{CORR}(M06-2X)}$, $E_{\text{CORR}(M06-2X)}^{\text{HOMO}}$	0.6861	0.0852 0.7495	0.0218 0.77	13 0.3115	0.9031	1.0581	0.7464	35.405	5 0.78	82 0.7855	0.8438	0.8709	0.8287	0.8659 0.73	51 0.0946	0.7496	0.8728	0.5921	19.5763	26.8679	11.6993	0.7784	0.6782 8	8287 -	19.4964	8.6815	-19.6684	8.3277	-20.4056
4	$E_{\text{CORR}(M06-L)}, \chi_{\text{CORR}(M06-L)}$	0.6695	0.0904 0.7371	0.0229 0.75	9 0.241	0.9253	1.0856	0.9136	33.2364	1 0.68	26 0.6786	0.7659	0.8636	0.8192	0.8005 0.61	88 0.102	0.7607	0.8855	0.6909	20.547	28.2853	17.5282	0.7694	0.6687 8	8857 -	19.4851	8.7441	-19.5772	8.447	-20.6445
5	$E_{\text{CORR}(M06-L)}, \eta_{\text{CORR}(M06-L)}$	0.6694	0.0905 0.737	0.0229 0.75	9 0.2345	0.9253	1.0857	0.9114	33.2309	1 0.68	42 0.6801	0.7671	0.8636	0.8192	0.8027 0.61	88 0.1047	0.756	0.8802	0.6891	20.5496	28.2921	17.4438	0.7684	0.6552	3.391 -	20.3677	8.2215	-20.3838	8.5237	-19.8401
6	$E_{\text{CORR}(M06-L)}, \omega_{\text{CORR}(M06-L)}$	0.6606	0.0938 0.7311	0.0234 0.75	0.2341	0.9358	1.1001	0.9231	32.2604	1 0.6	76 0.6719	0.7611	0.86	0.8141	0.7936 0.61	17 0.1147	0.7582	0.8835	0.6849	21.016	29.0443	17.8928	0.7641	0.6600 8	9533 -	19.5899	8.57	-20.1556	8.6003	-20.0929
7	$E_{\text{CORR}(M06)}, \chi_{\text{CORR}(M06)}$	0.6513	0.0953 0.7225	0.0241 0.74	6 0.1828	0.9506	1.1152	0.9493	30.9351	1 0.65	74 0.653	0.7473	0.8549	0.8076	0.7846 0.59	09 0.0852	0.8021	0.9337	0.7317	21.6881	29.8475	18.9236	0.7581	0.6389 8	6126 -	19.9997	8.7449	-19.6801	8.6409	-20.0249
8	$E_{\text{CORR}(M06)}, \eta_{\text{CORR}(M06)}$	0.6483	0.0968 0.7209	0.0243 0.74	52 0.1819	0.9533	1.1199	0.9448	30.7042	1 0.66	06 0.6563	0.7497	0.854	0.8059	0.7873 0.59	42 0.0849	0.8106	0.9439	0.7261	21.8097	30.0983	18.7452	0.7573	0.6307 8	7074 -	19.7769	8.6103	-19.9712	8.9118	-19.7475
9	$E_{\text{CORR}(M06)}, \omega_{\text{CORR}(M06)}$	0.623	0.1053 0.7024	0.0259 0.72	83 0.1965	0.9843	1.1595	0.9104	28.1441	1 0.68	49 0.6809	0.7676	0.8428	0.7911	0.7974 0.63	25 0.086	0.8507	0.989	0.7023	23.2546	32.2671	17.4038	0.7384	0.6227 9	0155 -	19.4652	8.7895	-19.6078	9.0004	-19.8773
10	$E_{\text{CORR}(M06-2X)}, \eta_{\text{CORR}(M06-2X)}$	0.6188	0.1118 0.7049	0.0257 0.730	0.2631	0.9803	1.166	0.88	28.4672	4 0.70	55 0.7018	0.7828	0.8443	0.79	0.8137 0.66	18 0.0493	0.8277	0.9717	0.6909	23.0617	32.6282	16.2639	0.7446	0.6063 8	8405 -	20.0973	8.5221	-20.224	8.3951	-20.8453
11	$E_{\text{CORR}(M06-2X)}, \chi_{\text{CORR}(M06-2X)}$	0.6152	0.1115 0.7007	0.026 0.72	67 0.2568	0.9872	1.1714	0.8773	27.9249	4 0.70	73 0.7036	0.7842	0.8417	0.7876	0.8137 0.66	26 0.0659	0.8317	0.976	0.6874	23.3872	32.934	16.1639	0.7397	0.6057 8	8554 -	20.2998	8.7956	-19.7671	8.7678	-20.1372
12	$E_{\text{CORR}(M06-2X)}, \omega_{\text{CORR}(M06-2X)}$	0.6081	0.113 0.6946	0.0266 0.72	0.266	0.9972	1.1822	0.8982	27.1551	2 0.69	32 0.6893	0.7738	0.838	0.7827	0.8002 0.65	32 0.074	0.8291	0.972	0.6962	23.8653	33.5397	16.9426	0.7334	0.5916 8	6783 -	19.9128	8.995	-19.4032	8.0754	-21.0687
13	$E_{\text{CORR}(M06-2X)}$, $E_{\text{CORR}(M06-2X)}^{\text{LUMO}}$	0.5315	0.1223 0.6208	0.033 0.65	87 0.0027	1.1112	1.2926	1.1335	19.8246	0 0.51	15 0.5053	0.6397	0.7906	0.7276	0.644 0.50	47 0.0598	0.9233	1.0646	0.9344	29.6343	40.0998	26.979	0.6715	0.5171 8	8175 -	20.0737	8.3812	-20.1623	8.52	-20.5053
14	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{LUMO}}$	0.5227	0.134 0.624	0.0327 0.65	57 -0.002	1.1064	1.3046	1.2451	20.0891	0 0.41	06 0.4031	0.5653	0.7928	0.7266	0.5574 0.37	97 0.0779	0.9312	1.0896	1.0321	29.3782	40.8468	32.5554	0.6744	0.5009	3.561 -	20.8725	8.4949	-19.9891	8.2863	-22.2119
15	E _{CORR(M06)} , E ^{LUMO} _{CORR(M06)}	0.494	0.1452 0.6048	0.0344 0.63	2 -0.0325	1.1343	1.3434	1.2058	18.6019	0 0.44	72 0.4401	0.5923	0.7799	0.7039	0.5859 0.43	52 0.0744	0.9476	1.1042	0.999	30.8794	43.3104	30.5339	0.6589	0.4860 8	5851 -	20.6376	8.9148	-19.2392	8.4583	-21.0518

Models are arranged according to Q²LCO values. Parameters are obtained through QSARNS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table 528. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA100), developed using electron-correlation (CORR(M06), CORR(M06-L), CORR(M06-2X)) based methods through 30% (random) splitting method.

									N.																				
Model	Variables	Q^{2}_{LOO} R	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^{2}-R^{2}_{adj}$ R^{2}	ΔK	RMSE TR	RMSE _{CV}	RMSE EXT	F Ext.Ol	$K Q^{2}_{F1}$	Q^{2}_{F2}	Q^2_{F3} C	CCC TR (CCC _{CV}	CCC EXT 7	$\Delta r_m^2 = \Delta r_m^2$	MAE TR	MAE CV	MAE EXT RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	Q^{2}_{LMO}	R ² _{Yscr}	Q ² _{Yscr}	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\text{CORR(M06)}}, E_{\text{CORR(M06)}}^{\text{HOMO}}$	0.7232	0.0543 0.7617	0.0159 0.77	75 0.2798	0.8119	0.9056	0.7592 48	3.9348	5 0.8235	0.8175 0	0.8055	0.8749	0.8464	0.8892 0.	8156 0.0106	0.673	0.7509	0.585 20.4338	25.4217	7.4932	0.7812	0.6946	6.528	-15.1181	6.7988	-14.4774	6.9398	-14.6168
2	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{HOMO}}$	0.7216	0.0523 0.7578	0.0161 0.7	74 0.2845	0.8184	0.9082	0.849 47	.9387	5 0.7794	0.7718 0	0.7568	0.8726	0.8451	0.8573 0.	7515 0.0787	0.6648	0.7402	0.6746 20.7624	25.5704	9.3694	0.7775	0.6937	6.7815	-14.755	6.1939	-15.284	6.9448	-14.5312
3	$E_{\text{CORR}(M06-2X)}, E_{\text{CORR}(M06-2X)}^{\text{HOMO}}$	0.7019	0.0575 0.7421	0.0172 0.75	93 0.2901	0.8445	0.9399	0.6396 44	.1733	5 0.8748	0.8705 0	0.8619	0.8632	0.8326	0.9264 0.	8493 0.0489	0.6967	0.7734	0.4619 22.1063	27.3842	5.3183	0.7622	0.6784	6.7294	-14.7926	6.7132	-14.5327	6.8356	-14.6129
4	$E_{\text{CORR}(M06-L)}, \eta_{\text{CORR}(M06-L)}$	0.6754	0.0602 0.7168	0.0189 0.73	57 0.3326	0.885	0.9807	0.7907 38	8.9602	5 0.8086	0.802	0.789	0.8477	0.8155	0.8829 0	0.799 0.0726	0.7154	0.7933	0.5677 24.2823	29.8127	8.1281	0.7395	0.6480	6.5491	-14.7557	6.4427	-14.9318	6.433	-15.1223
5	$E_{\text{CORR}(M06-L)}$, $\chi_{\text{CORR}(M06-L)}$	0.6753	0.0601 0.7165	0.0189 0.73	54 0.3367	0.8854	0.9809	0.7992 38	8.9183	5 0.8044	0.7978 0).7844	0.8476	0.8154	0.8803 0.	7937 0.0739	0.7168	0.7948	0.5739 24.3015	29.825	8.3039	0.7387	0.6416	6.6108	-14.7732	6.7026	-14.7912	6.53	-14.8213
6	$E_{\text{CORR}(M06)}, \eta_{\text{CORR}(M06)}$	0.663	0.0617 0.705	0.0197 0.72	47 0.2685	0.9033	0.9994	0.7982 36	5.8452	5 0.805	0.7983	0.785	0.8403	0.8066	0.8815 0.	7806 0.0678	0.74	0.8196	0.5709 25.2924	30.9598	8.2816	0.7282	0.6256	6.8607	-14.5786	6.7568	-14.529	6.5069	-15.0691
7	$E_{\text{CORR}(M06)}, \chi_{\text{CORR}(M06)}$	0.662	0.0617 0.7039	0.0197 0.72	37 0.2617	0.9049	1.0008	0.7942 36	6.6623	5 0.8069	0.8003 0).7871	0.8397	0.806	0.8826 0.	7817 0.066	0.7418	0.8215	0.5583 25.3837	31.0503	8.2004	0.7282	0.6216	6.6641	-14.6638	6.4698	-15.0797	6.8296	-14.6233
8	$E_{\text{CORR}(M06)}, \omega_{\text{CORR}(M06)}$	0.6613	0.0648 0.7066	0.0196 0.72	61 0.2755	0.9008	1.0018	0.8018 37	.1222	5 0.8032	0.7965 0	0.7831	0.8413	0.8065	0.8818 0.	7646 0.0661	0.7559	0.8389	0.59 25.1553	31.1107	8.3569	0.7310	0.6292	6.8367	-14.5961	6.8001	-14.572	7.0385	-14.5611
9	$E_{\text{CORR}(M06-L)}, \omega_{\text{CORR}(M06-L)}$	0.6609	0.0648 0.7061	0.0196 0.72	57 0.3244	0.9015	1.0024	0.7898 37	.0447	5 0.809	0.8025 0	.7895	0.8411	0.8065	0.8819 0.	8079 0.0706	0.7296	0.8103	0.5737 25.1935	31.1497	8.1098	0.7292	0.6409	6.4979	-15.0033	6.6576	-14.5171	6.7142	-14.9102
10	$E_{\text{CORR}(M06-2X)}$, $\chi_{\text{CORR}(M06-2X)}$	0.6564	0.0667 0.7032	0.0198 0.7	23 0.3365	0.9059	1.0091	0.7164 36	6.5454	5 0.8429	0.8375 0	0.8268	0.8392	0.8036	0.9054 0.	8173 0.0533	0.759	0.8454	0.5295 25.4424	31.5655	6.6715	0.7284	0.6221	6.4501	-15.47	6.4223	-15.1167	6.7822	-14.9699
11	$E_{\text{CORR}(M06-2X)}, \eta_{\text{CORR}(M06-2X)}$	0.656	0.0668 0.7029	0.0198 0.72	27 0.3487	0.9064	1.0097	0.7178 36	5.4911	5 0.8422	0.8369 0	0.8261	0.839	0.8034	0.9051 0.	8154 0.0538	0.7609	0.8471	0.5288 25.4698	31.6022	6.6986	0.7253	0.6259	6.3675	-15.4972	6.5863	-15.0296	6.2227	-15.5397
12	$E_{\text{CORR}(M06-2X)}, \omega_{\text{CORR}(M06-2X)}$	0.6396	0.0698 0.6886	0.0208 0.70	93 0.3612	0.928	1.0335	0.7395 34	.1662	5 0.8326	0.8268 0	0.8154	0.83	0.7924	0.896	0.832 0.0511	0.7744	0.8616	0.5575 26.6991	33.1097	7.1096	0.7130	0.6059	6.6898	-15.1298	6.5104	-14.7607	6.7995	-14.9874
13	$E_{\text{CORR}(M06-2X)}, E_{\text{CORR}(M06-2X)}^{\text{LUM0}}$	0.5755	0.0832 0.6343	0.0244 0.65	87 0.0378	1.0056	1.1215	0.9235 27	.0222	4 0.7389	0.73 0).7122	0.7943	0.7465	0.8103 0.	7924 0.0762	0.8302	0.9239	0.7376 31.3488	38.9937	11.0877	0.6667	0.5487	6.5367	-15.3422	6.402	-14.9494	6.632	-14.9778
14	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{LUMO}}$	0.5624	0.0938 0.6316	0.0246 0.65	61 0.0137	1.0094	1.1387	1.0665 26	5.7135	0 0.6518	0.6399 0	0.6161	0.7924	0.7416	0.7254 0.	5871 0.1498	0.8563	0.9616	0.8713 31.5865	40.1981	14.7868	0.6651	0.5290	6.6064	-15.6886	6.7866	-14.4637	6.8157	-15.2508
15	ECORB(MO6), ECORB(MO6)	0.5461	0.0972 0.6179	0.0255 0.64	34 -0.0012	1.028	1.1597	1.0389 25	.2549	0 0.6696	0.6583 0	0.6358	0.783	0.7267	0.7437 0.	6479 0.1244	0.864	0.9679	0.8556 32.7601	41.6903	14.0301	0.6506	0.5347	6.484	-15.4977	6.7901	-14.4595	6.6852	-15.0387

Models are arranged according to Q_{LOO}^2 values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S29. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-correlation (CORR(M06), CORR(M06-L), CORR(M06-2X)) based methods through activity sampling (ordered response) splitting method.

										14.																		
Model	Variables	Q^2_{LOO} k	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj}$	$R^2 \Delta K$	RMSE TR	RMSE CV	RMSE EXT	F	Ext.OK Q ²	$1 Q^{2}_{F2}$	Q_{F3}^2	CCC TR	CCC _{CV}	CCC EXT	$\overline{r}_m^2 = \Delta r_m^2$	MAE TR	MAE CV	MAE EXT RS	S TR PRESS	CV PRESS EXT	R^{2}_{LMO}	$Q^2_{LMO} R^2_{Yscr}$	$Q^2_{\rm Yscr}$	R ² _{Xrand}	Q^2_{Xrand}	R ² _{Yrand}	Q^2_{Yrand}
1	$E_{\text{CORR}(M06-2X)}, E_{\text{CORR}(M06-2X)}^{\text{HOMO}}$	0.9611	0.0198 0.9733	0.0076 0.9	9809 0.2325	0.2937	0.4194	0.4926	128.4472	5 0.89	98 0.8978	0.9463	0.9904	0.9806	0.9508	0.8575 0.075	4 0.2205	0.3249	0.42	0.69 1.40	72 1.2131	0.9819	0.6700 27.3059	-109.8418	28.4018	-108.0133 7	29.1242 -1	105.3201
2	$E_{\text{CORR}(M06)}$, $E_{\text{CORR}(M06)}^{\text{HOMO}}$	0.9559	0.0225 0.9697	0.0086 0.9	9784 0.1867	0.3125	0.4463	0.4916	113.1597	5 0.90	02 0.8982	0.9465	0.9891	0.978	0.9484	0.8666 0.043	4 0.2566	0.3811	0.3949 0.3	812 1.59	32 1.2081	0.9792	0.6044 29.605	-106.4775	29.0671	-107.032 2	28.6567	-113
3	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{HOMO}}$	0.9539	0.0238 0.9688	0.0089 0.9	9777 0.1881	0.3175	0.4563	0.4764	109.5577	5 0.90	63 0.9044	0.9498	0.9887	0.977	0.9523	0.8764 0.070	5 0.2713	0.4095	0.3817 0.8	063 1.66	57 1.1349	0.9789	0.5603 28.4443	-126.6977	29.2881	-106.2399 7	28.3569 -1	19.7613
4	$E_{\text{CORR}(M06-L)}, \omega_{\text{CORR}(M06-L)}$	0.9438	0.032 0.9661	0.0097 0.9	9758 0.4404	0.331	0.5039	0.6715	100.6098	5 0.81	38 0.810	0.9002	0.9877	0.9719	0.9094	0.7557 0.12	3 0.2497	0.4003	0.5515 0.8	763 2.03	12 2.2544	0.9779	0.4794 29.0988	-94.1846	27.7599	-109.4249 2	27.7401 -1	100.3493
5	$E_{\text{CORR}(M06-L)}, \eta_{\text{CORR}(M06-L)}$	0.9359	0.036 0.9606	0.0113 0.9	9718 0.3715	0.3567	0.5382	0.7111	86.2733	5 0.79	12 0.78	0.8881	0.9857	0.9676	0.8958	0.7419 0.111	9 0.2466	0.3837	0.5937 1.0	178 2.31	75 2.5286	0.9749	0.3744 28.4071	-98.586	29.9315	-100.8189 7	27.3732 -1	101.3424
6	$E_{\text{CORR}(M06-L)}, \chi_{\text{CORR}(M06-L)}$	0.9338	0.0372 0.9594	0.0116 0	.971 0.3918	0.3621	0.547	0.7249	83.6362	5 0.78	31 0.778	0.8837	0.9853	0.9665	0.8911	0.7333 0.110	9 0.2523	0.3956	0.598 1	049 2.39	34 2.6271	0.9739	0.3444 29.6038	-95.005	28.0895	-109.1424 2	29.8759	-92.1366
7	$E_{\text{CORR}(M06-2X)}, \omega_{\text{CORR}(M06-2X)}$	0.932	0.0376 0.9574	0.0122 0.9	9696 0.4162	0.3707	0.5545	0.7322	79.6938	5 0.77	87 0.7742	0.8813	0.9846	0.9656	0.8864	0.7211 0.072	9 0.3056	0.478	0.541 1.0	993 2.45	93 2.6804	0.9720	0.3794 28.7329	-100.8902	28.9748	-101.9151 7	28.0158 -1	102.8402
8	$E_{\text{CORR}(M06-2X)}, \chi_{\text{CORR}(M06-2X)}$	0.9308	0.038 0.9563	0.0125 0.9	9688 0.4878	0.3756	0.5593	0.7085	77.536	5 0.79	28 0.7886	0.8889	0.9841	0.9651	0.8965	0.7389 0.090	4 0.2871	0.4424	0.5737 1.1	289 2.50	21 2.5095	0.9716	0.4423 28.7792	-97.627	29.3015	-107.527 2	29.0874	-94.9439
9	$E_{\text{CORR}(M06-2X)}, \eta_{\text{CORR}(M06-2X)}$	0.9287	0.0398 0.9559	0.0126 0.9	9685 0.4364	0.3774	0.5675	0.7146	76.7836	5 0.78	91 0.7849	0.887	0.984	0.964	0.8938	0.7376 0.100	2 0.2799	0.4302	0.5661 1.3	.396 2.57	67 2.5535	0.9710	0.3673 29.2764	-94.4813	27.779	-111.1206	29.375	-94.7392
10	$E_{\text{CORR}(M06)}, \eta_{\text{CORR}(M06)}$	0.9256	0.0426 0.9556	0.0127 0.9	9683 0.4757	0.3787	0.5796	0.7536	76.246	5 0.76	55 0.7608	0.8743	0.9839	0.9625	0.8802	0.7115 0.092	9 0.2976	0.478	0.6161 1.1	.474 2.68	79 2.8397	0.9714	0.4077 28.3468	-95.6521	28.0674	-110.4506 2	29.5381	-93.032
11	$E_{\text{CORR}(M06)}, \chi_{\text{CORR}(M06)}$	0.9226	0.0447 0.9543	0.0131 0.9	9674 0.4747	0.3839	0.5912	0.7411	74.1171	5 0.77	32 0.7686	0.8784	0.9834	0.9609	0.8833	0.7185 0.082	5 0.2931	0.472	0.5956 1.1	793 2.79	57 2.7464	0.9710	0.2739 29.7615	-90.2826	28.193	-108.2182 7	29.3719	-92.5418
12	$E_{\text{CORR}(M06)}, \omega_{\text{CORR}(M06)}$	0.9032	0.0612 0.9501	0.0142 0.9	9644 0.4063	0.4011	0.6614	0.6777	67.6918	5 0.81	04 0.8066	0.8983	0.9819	0.9514	0.9016	0.7843 0.119	5 0.2948	0.4877	0.5544 1.2	872 3.49	99 2.2963	0.9696	0.3628 28.5542	-91.4535	28.1268	-108.4975	27.707	-92.6319
13	$E_{\text{CORR}(M06-2X)}, E_{\text{CORR}(M06-2X)}^{\text{LUMO}}$	0.8823	0.0682 0.9307	0.0198 0.9	9505 0.1528	0.473	0.7293	0.8589	47.9911	1 0.69	55 0.6893	0.8367	0.9746	0.9408	0.8449	0.623 0.046	7 0.3896	0.6139	0.6646 1.3	895 4.25	55 3.6882	0.9538	-0.0319 28.4266	-95.5974	28.2882	-104.9962	28.451	-95.8422
14	$E_{\text{CORR}(M06)}, E_{\text{CORR}(M06)}^{\text{LUMO}}$	0.8808	0.0646 0.9235	0.0219 0.9	9453 0.1002	0.4969	0.734	0.9187	43.2416	1 0.65	15 0.6445	0.8132	0.9719	0.9403	0.8214	0.5774 0.048	3 0.4186	0.6304	0.7235 1.9	753 4.30	96 4.2201	0.9486	-0.1326 28.5311	-100.8503	28.382	-109.0724 7	28.4172 -1	100.3383
15	E _{CORR(M06-L)} , E ^{LUMO} _{CORR(M06-L)}	0.8734	0.0744 0.927	0.0209 0.9	9479 0.0484	0.4854	0.7561	0.8966	45.4447	1 0.66	81 0.6614	0.822	0.9732	0.9366	0.8308	0.5941 0.044	5 0.4056	0.6353	0.7042 1.8	845 4.57	38 4.0196	0.9520	0.1360 28.0617	-91.414	29.1216	-104.2578 2	28.2849	-91.9444

Models are arranged according to Q²_{LOO} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values

Table S30. Value of internal and external validation parameters of two-descriptor QSAR models, for mutagenicity (LogTA98), developed using electron-correlation (CORR(M06), CORR(M06-L), CORR(M06-2X)) based methods through activity sampling 30% (random) splitting method.

									N.																				
Model	Variables	Q^2_{LOO} k	$R^2 - Q^2_{LOO} = R^2_{adj}$	$R^2 - R^2_{adj}$	$R^2 \Delta K$	RMSE TR	RMSE CV	RMSE EXT F	Ext.OK	Q_{F1}^2	$Q^{2}_{F2} Q^{2}_{F3}$	CCC TR	$CCC_{\rm CV}$	CCC EXT	$\overline{r}_m^2 = 2$	$\Delta r_m^2 = M$	MAE TR	MAE _{CV}	MAE EXT RSS TR	PRESS CV	PRESS EXT	R^{2}_{LMO}	$Q^2_{\rm LMO}$	R ² _{Yscr}	Q^{2}_{Yscr}	R ² _{Xrand}	Q^2_{Xrand} H	Yrand	Q^2_{Yrand}
1	$E_{\text{CORR}(M06-2X)}$, $E_{\text{CORR}(M06-2X)}^{\text{HOMO}}$	0.8891	0.0546 0.9276	0.0161 0	0.9437 0.214	1 0.4696	0.659	0.3061 58.61	96 5	0.9745	0.9741 0.976	1 0.971	0.9434	0.9874	0.899 0	.0141	0.3975	0.562	0.2843 2.2053	4.3422	0.3748	0.9462	0.7427	22.6424	-59.2023	22.1038	-67.8088 2	2.7615 -	59.8664
2	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{HOMO}}$	0.8799	0.0588 0.9211	0.0175 0	0.9386 0.215	3 0.4901	0.6858	0.3138 53.54	19 5	0.9732	0.9728 0.974	3 0.9684	0.9388	0.9877	0.8535	0.018	0.3977	0.5631	0.2669 2.4015	4.7028	0.3938	0.9405	0.7126	22.6056	-60.9789	23.2717	-64.3708 2	1.9391 -	62.4158
3	$E_{\text{CORR(M06)}}, E_{\text{CORR(M06)}}^{\text{HOMO}}$	0.8798	0.0594 0.9219	0.0174 0	0.9392 0.216	6 0.4876	0.6858	0.3258 54.11	07 5	0.9711	0.9706 0.972	9 0.9687	0.9388	0.9866	0.8489 0	.0182	0.3965	0.5594	0.2738 2.3779	4.7032	0.4246	0.9433	0.6687	22.1341	-61.5401	21.7539	-69.0825 2	3.2127	-59.496
4	$E_{\text{CORR}(M06)}, \omega_{\text{CORR}(M06)}$	0.8361	0.0768 0.888	0.0249 0	0.9129 0.387	9 0.5839	0.801	0.5497 36.68	12 5	0.9177	0.9164 0.922	8 0.9545	0.9134	0.965	0.7415 0	.0495	0.4704	0.6593	0.4495 3.4094	6.4154	1.2087	0.9177	0.5801	22.2309	-61.4706	21.8487	-68.0915 2	2.9083 -	60.7558
5	$E_{\text{CORR}(M06-L)}, \omega_{\text{CORR}(M06-L)}$	0.8297	0.0644 0.8638	0.0303	0.894 0.339	7 0.644	0.8165	0.5152 29.53	38 5	0.9277	0.9266 0.932	2 0.9441	0.9114	0.9661	0.7907 0	.0326	0.4723	0.6456	0.504 4.1471	6.666	1.0616	0.8928	0.5006	21.938	-65.0466	22.0054	-68.7132 2	2.4464 -	65.3091
6	$E_{\text{CORR}(M06-2X)}, \chi_{\text{CORR}(M06-2X)}$	0.819	0.0852 0.8768	0.0274 0	0.9042 0.293	8 0.6125	0.8417	0.6359 33.02	21 5	0.8898	0.8881 0.896	7 0.9497	0.907	0.9463	0.7828 0	.0366	0.486	0.6889	0.6234 3.751	7.0844	1.6177	0.9071	0.5675	21.9262	-67.103	21.5217	-69.9175 2	2.9683 -	64.6405
7	$E_{\text{CORR}(M06-2X)}, \eta_{\text{CORR}(M06-2X)}$	0.8165	0.0786 0.865	0.03	0.895 0.290	6 0.641	0.8476	0.5799 29.8	13 5	0.9084	0.907 0.914	0.9446	0.9043	0.9573	0.7685 0	.0406	0.4835	0.6721	0.5623 4.1086	7.1835	1.3453	0.8943	0.4570	22.4365	-64.9872	22.298	-67.0859 2	1.8294 -	67.7045
8	$E_{\text{CORR}(M06-L)}, \eta_{\text{CORR}(M06-L)}$	0.8099	0.0844 0.864	0.0302 0	0.8942 0.371	3 0.6434	0.8626	0.5284 29.59	34 5	0.9239	0.9228 0.928	7 0.9442	0.9009	0.9646	0.783 0	.0346	0.4931	0.6914	0.5189 4.1396	7.4413	1.1167	0.8978	0.5739	22.0247	-65.2178	22.6672	-66.1658 2	1.9127 -	66.4633
9	$E_{\text{CORR}(M06-L)}, \chi_{\text{CORR}(M06-L)}$	0.8027	0.0823 0.8522	0.0328	0.885 0.361	8 0.6708	0.8788	0.5297 26.94	58 5	0.9235	0.9224 0.928	3 0.939	0.8963	0.9646	0.7792 0	.0358	0.5096	0.7018	0.517 4.4995	7.7224	1.1222	0.8827	0.5222	22.4299	-63.988	22.4202	-67.0032	21.816	-66.269
10	$E_{\text{CORR}(M06-2X)}, \omega_{\text{CORR}(M06-2X)}$	0.7985	0.0968 0.8654	0.0299 0	0.8953 0.256	6 0.6401	0.8881	0.5891 29.93	35 5	0.9054	0.904 0.911	3 0.9448	0.8976	0.9527	0.8168 0	.0318	0.4882	0.7107	0.5444 4.0969	7.8867	1.388	0.8965	0.5239	21.9545	-72.5352	21.6271	-69.1194 2	2.7447	-69.239
11	$E_{\text{CORR}(M06)}, \eta_{\text{CORR}(M06)}$	0.7958	0.0878 0.8503	0.0333 0	0.8836 0.305	3 0.675	0.8941	0.5827 26.56	59 5	0.9075	0.9061 0.913	2 0.9382	0.8923	0.9548	0.7994 0	.0298	0.5312	0.7339	0.5816 4.5563	7.9939	1.3584	0.8842	0.4748	22.5092	-63.633	22.8636	-67.0277 2	2.0439	-65.375
12	$E_{\text{CORR}(M06)}, \chi_{\text{CORR}(M06)}$	0.7936	0.0859 0.8451	0.0344 0	0.8795 0.342	8 0.6866	0.8987	0.5744 25.55	58 5	0.9101	0.9087 0.915	7 0.9359	0.8912	0.9578	0.7739 0	.0376	0.5247	0.7198	0.5686 4.7149	8.0772	1.3199	0.8804	0.5043	21.2928	-66.6456	22.8814	-65.4006 2	2.3948	-63.6
13	$E_{\text{CORR}(M06-2X)}, E_{\text{CORR}(M06-2X)}^{\text{LUMO}}$	0.6705	0.1492 0.7682	0.0515 0	0.8197 0.258	1 0.8401	1.1357	0.6439 15.91	17 5	0.887	0.8853 0.894	0.9009	0.8217	0.956	0.7036 0	.0647	0.664	0.9172	0.5402 7.0573	12.8982	1.6582	0.8271	0.0144	22.8463	-66.7218	22.6558	-67.4599	22.231 -	68.1258
14	$E_{\text{CORR}(M06-L)}, E_{\text{CORR}(M06-L)}^{\text{LUMO}}$	0.665	0.1531 0.7661	0.052 0	0.8181 0.0	9 0.8438	1.1451	0.6628 15.74	27 5	0.8803	0.8785 0.887	8 0.9	0.8214	0.9548	0.7152 0	.0623	0.6627	0.8979	0.5718 7.1193	13.1118	1.7571	0.8230	0.1211	22.0395	-66.0791	21.3707	-69.9536 2	2.0005 -	66.2792
15	ECORR/M06); ECORR/M06)	0.6506	0.1511 0.745	0.0567 0	0.8016 0.177	7 0.8811	1.1695	0.663 14.14	52 5	0.8802	0.8784 0.887	7 0.8899	0.8099	0.9543	0.7029 0	.0659	0.7078	0.9499	0.5692 7.7638	13.6769	1.7585	0.8063	-0.0129	22.0868	-70.1	22.5876	-66.138 2	2.0817 -	69.3175

Models are arranged according to Q²_{LOO} values. Parameters are obtained through QSARINS software. Ref. [54] N. Chirico, E. Papa, S. Kovarich, S. Cassani, P. Gramatica, QSAR Res. Unit in Environ. Chem. and Ecotox. University of Insubria, Varese, Italy, 2012. (http://www.qsar.it).

R²_{adi} adjusted R²

N. Ext.OK Number of external validation parameters meeting threshold values