Enhanced Shape Memory Performance of Polyurethanes via the Incorporation of Organic or Inorganic Networks

Chien-Hsin Wu¹, Shi-Min Shau², Shin-Chih Liu², Shenghong A. Dai², Su-Chen Chen³, Rong-Ho Lee^{2*}, Chi-Fa Hsieh⁴, and Ru-Jong Jeng^{1*}

*Corresponding authors. RHL, Tel.: +886-4-2285-4308; Fax: +886-4-2285-4734; RJJ, Tel.: +886-2-3366-5884; Fax: +886-2-3366-5237

E-mail: rhl@dragon.nchu.edu.tw (RHL); rujong@ntu.edu.tw (RJJ)

¹ Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan

² Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan

³ Department of Energy and Materials Technology, Hsiuping University of Science and Technology, Taichung 412, Taiwan

⁴ Chung-Shan Institute of Technology, Lungtan, Taoyuan 325, Taiwan

Supporting Information

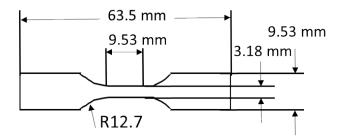


Fig S1. ASTM D638 specification for tensile strength measurements.

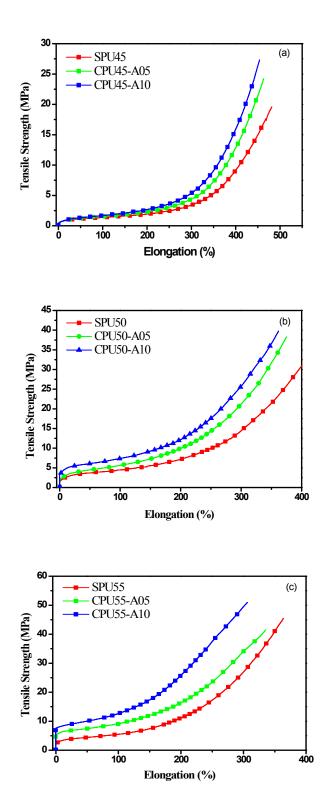


Figure S2. Tensile strengths of the CPU samples.

Shape memory test condition:

The shape memory test was employed to evaluate the shape fixity and shape recovery performances. In the beginning, the painted red PU samples were deformed and wound around a rod at a deformation temperature ($T_{def} = 70 \, ^{\circ}\text{C}$), and annealed for 15 s. Subsequently, the samples were cooled to a fixed temperature ($T_{fix} = 10 \, ^{\circ}\text{C}$) for 15 s. After that, the samples were heated to 70 $^{\circ}\text{C}$ again. The recovery of the deformed PU samples was observed as a function of time.