Si doped highly crystal mesoporous In₂O₃ nanowires: synthesis,

characterization and ultra-high response to NO_x at room temperature

Liyuan Yao^a, Kan Kan^{a,c}, Yufei Lin^a, Jiabao Song^a, Jingchao Wang^a, Jun Gao^a, Peikang Shen^d, Li Li^{*a,b} and Keying Shi^{*a}

- ^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
- ^b Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
- ^c Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150000, P. R. China.
- ^d Department of Physics and Engineering Sun Yat-sen University, Guangzhou, 510275, P. R. China.
- *E-mail:shikeying2008@163.com;llwjjhlju@sina.cn; Fax:* +86 4518667 3647; *Tel:* +86 451 8660 9141

Fig. S1. BET specific surface areas of SBA-16 (BET: 270.99 m²/g; the pore size is 3.92nm).

Fig. S2. TEM/HRTEM images of In_2O_3 NWs doped by amorphous silica samples.

(a)~(f) INW-2, and (f) is the HRTEM image of Fig.3e.

Fig. S3. PL spectra of (A) SiO₂ (SBA-16) with 325 nm excitation at room temperature of and (B) UV-vis diffuse absorption spectra of SiO₂-In₂O₃ composites with different atomic ratios.

Fig.S3A is PL spectra of SiO₂ (SBA-16) with 325 nm excitation at room temperature. In Figure.S3B, the absorption edge around 550 nm was pure In_2O_3 NWs. The absorption edges observed to be around 675 nm were In_2O_3 NWs doped by amorphous silica samples (INW-1, INW-2, INW-3 and INW-4). Besides, it was denoted that the absorption in UV light region decreased for pure In_2O_3 NWs compared with In_2O_3 NWs doped by amorphous silica. This demonstrated that the coverage of SiO₂ on In_2O_3 surface did not restrain the absorption of UV light. This was different from previous studies¹ about the SiO₂-coated TiO₂ (the average thickness of SiO₂ coating layer was 2-3 nm).

Furthermore, In_2O_3 NWs doped by amorphous silica samples (HCMIAs) with a high aspect ratio and peculiar morphologies should favor the existence of large quantities of oxygen vacancies, which would induce the formation of new energy levels in the band gap. The UV absorption of HCMIAs occurred at 300-310 nm indicating that the existence of weak quantum confinement effect².

Fig. S4. XPS spectra of (A) O1s of SiO₂ (SBA-16) and (B) low binding energy region in XPS of samples containing valence band in In4d (a) In₂O₃, (b) INW-1, (c) INW-2 and (d) INW-4, respectively.

Fig. S4A showed the O1s spectra of pure SiO_2 (SBA-16) located at 532.8 eV were essentially composed one of a major component, which could be attributed to Si-O binding energy³. The spectra depicted a secondary component, which located at higher energy (533.8 eV) and could be ascribed to O-H groups linked to Si cations.

Fig. S5 FT-IR spectra of (a) SiO₂, (b) INW-1, (c) INW-2 and (d) INW-4, respectively.

FT-IR spectra of SiO₂, INW-1, INW-2 and INW-4 samples were shown in Fig. S5. As shown in Fig. S5, there were adsorptive peaks of amorphous silica hydroxyl at 3432-3633 cm⁻¹ and the spectrum should be attributed to the stretching of hydrogen (-OH) bond of H₂O⁴. The spectra of INW-1 and INW-2 appeared blue shifted to 3432 cm⁻¹, and red shifted in INW-4. Moreover, the peak appeared at 1644 cm⁻¹ and 461 cm⁻¹ were assigned to the bending vibrations of -OH) bond and Si-O group⁵ respectively. Furthermore, 1089 cm⁻¹ was symmetric stretching of Si-O-Si group whereas 802 cm⁻¹ was asymmetric stretching of Si-O-Si group. According to previous studies⁶⁻⁷, the band centered at 1108 cm⁻¹ was assigned to the vibrations of In-O bond ⁶. So, the absorptions in 554 cm⁻¹ and 599 cm⁻¹ and 430 cm⁻¹ were assigned to the stretching vibration of In-O⁷⁻⁹, respectively. In-O bond in plane bending vibrations should be appeared at 410 cm⁻¹. Comparing with the references, the adsorptive peaks shifted in Fig. S 5(b-d) might be affected by Si-O-In.

Volume concentration (ppm)		97.0	48.5	29.1	9.70	4.85	2.91	0.97
V-1	Response	39.56	40.42	53.33	23.16	4.63	4.06	-
INV	Response time/s	196	292.7	295.3	308	48	60.7	-
V-2	Response	115.6	94.7	41.64	39.18	30.62	9.54	1.68
NNI	Response time/s	118	109	108	151	330.7	309.3	194.7
INW-3	Response	17.39	13.6	7.07	2.8	-	-	-
	Response time/s	18	70	127	103	-	-	-
INW-4	Response	1.43	1.81	1.15	1.51	-	-	-
	Response time/s	64	92	133.5	63	-	-	-

Tab. S1 Comparison of the response-recovery results of (A) response and (B) response time of mesoporous INW composited NFs thin film sensor with different atomic ratios to NO_x (RH: 42 %)

Fig. S6 Images of the gas sensing test device

Fig S7. Response-recovery curves of the INW-2 sensor to 97ppm-0.97ppm at room temperature in the different RH (A) 42%, (B) 61% and (C) 80%.

Tab.S2 The gas response of the INW-2 sensor to 97ppm-0.97ppm NO_x at room temperature, the RH

range c	of 42-80%.
---------	------------

_			-					
	C/ppm	97.0	48.5	29.1	9.7	4.85	2.91	0.97
-	Gas Reponse at 42% RH	115.6	94.7	41.64	39.18	30.62	9.54	1.68
	Gas Reponse at 61% RH	110.8	90.6	38.7	35.1	30.7	8.48	1.39
	Gas Reponse at 80% RH	93.7	85/4	35.5	31.6	28.6	4.41	0.77

Metal Oxide	fetal Optimal xide Mixing ratio		Optimal Temperatu e (°C)	Response/ ppm S C		Reference	
In ₂ O ₃	Ta (2.3at. %)	Film	400	3.81	0.08	Chem.Mater, 24(2012), 2864-2871	
In ₂ O ₃	SnO ₂ (0.1 mol%)	Powders	250	2906	10	Sens. Actuators, B. 151(2010),265-273	
In ₂ O ₃	-	Nanosheet	250	164	50	Sens. Actuators, B. 208(2015),436-443	
Fe-In ₂ O ₃	Fe (0.05wt. %)	Powders	100	117	1	Sens. Actuators, B. 191(2014),806-812	
In ₂ O ₃	-	Microsphere	200	10	1	Sens. Actuators, B. 187(2013),495-502	
In ₂ O ₃	-	Particles	275	8	1	Electron.Mater.Lett. 10(2014),509-513	
In ₂ O ₃ /rGO	GO (0.5wt. %)	Composites	RT	0.25	1	Acs Appl.Mater.Interfaces. 6(2014),21093-21100	
In ₂ O ₃	-	Nanowire	150	50	10	Appl.Phys.A 85(2006),241-246	
Zn- In ₂ O ₃	In:Zn (7:1)	Flower-like	300	27.4	5	Rsc.Adv., 4(2014),15161-15170	
In ₂ O ₃	-	Microsphere	80	323.5	0.5	Rsc.Adv., 5(2015),4609-4614	
In ₂ O ₃	-	Nanoplates	150	73	1	Rsc.Adv., 4(2014),4831-4835	
In ₂ O ₃	-	Mesoporous	100	37.8	5	Sens. Actuators, B. 187(2013),484-494	
In ₂ O ₃	-	Slice-like	250	1.5	5	Sens. Actuators, B. 176(2013),258-263	

Table S3. The gas sensing properties of similar detection methods

References

- H. Sakai, T. Kanda, H. Shibata, T. Ohkubo and M. Abe, *Journal of the American Chemical Society*, 2006, **128**, 4944.
- 2. G. Liu, Int. J. Electrochem. Sci, 2011, 6, 2162.

- S. Permpoon, G. Berthomé, B. Baroux, J. C. Joud and M. Langlet, *Journal of materials science*, 2006, 41, 7650.
- 4. Z. Hou, C. Zhang, C. Li, Z. Xu, Z. Cheng, G. Li, W. Wang, C. Peng and J. Lin, *Chemistry-A European Journal*, 2010, 16, 14513.
- 5. X. Hou, H. Ding, Y. Zheng and M. Wang, *Materials Research Innovations*, 2013, 17, S234-S239.
- 6. MakramA.Fakhri. Sarmad Fawzi Hamza. *The Iraqi Journal For Mechanical And Material Engineering*, 2013, **13**, 120.
- M. Jothibas, C. Manoharan, S. Ramalingam, S. Dhanapandian, S. Johnson Jeyakumar and M. Bououdina, *Journal of Molecular Structure*, 2013, 1049, 239.
- A. Singhal, K. Dubey, Y. Bhardwaj, D. Jain, S. Choudhury and A. Tyagi, *RSC Advances*, 2013, 3, 20913.
- P. Innocenzi, G. Brusatin, S. Licoccia, M. L. Di Vona, F. Babonneau and B. Alonso, *Chemistry of Materials*, 2003, 15, 4790.