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Experimental Section
Determination of quantum yield
Fluorescence quantum yield of sensor 1 was determined in DMSO solution by using rhodamine B solution (®¢ = 0.36,
0.2 uM H,0) as the reference [1l.  The quantum yield was calculated using following equation:

Oy = [(AsFun?) / (AFn?) | Ds.
Where A and A, were the absorbance of the reference and sample solution at the reference excitation wavelength, F
and F, were the corresponding integrated fluorescence, n and ny were the refractive indexes of the solvents for the
sample and reference solutions. Absorbance of samples and references at their respective excitation wavelengths was

controlled to be lower than 0.05.

S2



~e o~ o @I N NG D0 D0 M N O 0 0 00 09O a5 .
o~ ne w R R e e R e R R s 140818-N-15-jingti
am 0w o L e e e e B N R A e i e 1
N S T L L e I e i Sorg0ors
17.52
spect
5 mm PAREO B3-
zg3
€5536
cDcl3
- _— NN 0O ® ~o @ “om - LR - 16
e &5 MAHOOEE 0N T 0 No o Goo w  rwmw g o@e o = M
o 22 Afh33coosasao o o® FE® @ inwinm o e . 4o0 an e
i X [ R @ e meEm M meeenmnnon @ o 0.125483 sz
3.9846387 sec
64
60,800 v
£.50
293.1 K
1.00000000 sec
1
CHANNEL £1
T I | I 1 I I 1 I I I
8.0 7.8 ppm 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 ppm
~ o o = 0| o | o
© S ° = o @ e w
S = S S i s s ~
o ol © = | o~ - )

10 9 8 7 6 5 4 3 2 1 0 ppm

SIES @ EEEERE

b ? = b el D B el

o (o - ||| od| 18
-

Fig. S1. 'H NMR spectrum of 3 (CDCl;, 400 MHz)
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Fig. S2. ¥C NMR spectrum of 3 (CDCl;, 100 MHz)
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Fig. S4. ¥*C NMR spectrum of 2 (CDCl;, 100 MHz)
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Fig. S6. 3*C NMR spectrum of 1 (DMSO—d;, 100 MHz)
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Fig. S7. HRMS-ESI spectra of 1
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Fig. S8. 'H-'H COSY NMR spectrum of 1 (DMSO-d)
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Fig. $9. 'H-13C HSQC NMR spectrum of 1 (DMSO-—dj).
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Fig S10. (a) Comparison of partial '"H NMR spectra of compounds 1 (in CDCl;) and 2 (in DMSO-dj). (b) Partial 'H-"H COSY NMR spectrum of
compound 1 (in DMSO-dj). (c) Partial '"H-*C HSQC NMR spectrum of compound 1 (in DMSO—dy).
Fig. S10 showed the comparison of 'H NMR spectra of compounds 1 (in CDCl;) and 2 (in DMSO-d;), '"H-'H COSY (in DMSO-d;) and 'H-'3C HSQC

NMR (in DMSO-d;) spectrum of 1. In 'H NMR, compound 2 showed a signal at 10.09 ppm which was recognized as the aldehyde proton. However,
this signal disappeared and six new signals developed in compound 1 (Fig. S10a).  All protons in '"H NMR spectrum of compound 1 were identified based
on the coupling constants, peak integration, and cross—peak correlations observed between the resonances in 'H-'H COSY and 'H-'3C HSQC spectra (Fig.
S10b—c, respectively). In 'H NMR spectrum of 1, the doublet resonance at 7.79 ppm which was identified as H,~type aryl proton showed cross—peak
correlation with triplet resonance at 7.14 ppm in '"H-'"H COSY spectrum which was indentified as H,~type aryl proton. The triplet resonance at 7.14 ppm
which was identified as H~type aryl proton showed cross—peak correlation with triplet resonance at 7.32 ppm and doublet resonance at 7.79 ppm in COSY
spectrum which were indentified as Htype and H,~type aryl protons, respectively. The Htype resonance at 7.32 ppm showed cross—peak correlation
with doublet resonance at 7.46 ppm and triplet resonance at 7.14 ppm in COSY spectrum which were indentified as H,~fype and H.~type aryl protons,
respectively. The doublet resonance at 8.04 ppm which was identified as H,—type meso—aryl proton showed cross—peak correlation with doublet resonance
at 7.87 ppm in 'H-'H COSY spectrum which was indentified as H,—type meso—aryl proton. The signals at 12.56 ppm and 8.22 ppm (which were
indentified as H,—type and H—type protons, respectively) in 'H NMR spectrum of 1 showed no cross—peak correlation in 'H-'H COSY spectrum (Fig.
S10b). To assign these two signals of 1, a 'H-'3C HSQC NMR spectrum was measured. ~As shown in Fig. lc, the signal at 8.22 ppm in 'H NMR
spectrum of 1 which was indentified as H.—type proton showed cross—peak correlation with the signal at 130.2 ppm which was identified as C—~type carbon
of hydrazone (CH=N-NH-) in 'H-'3C HSQC spectrum. And the signal at 12.56 ppm in 'H NMR spectrum of 1 which was recognized as H,~type proton
showed no cross—peak correlation in '"H-'3C HSQC spectra (Fig. S10c). From above analysis, the signal at 12.56 ppm in '"H NMR spectrum of 1 was
recognized as H,—type proton of hydrazone N—H adjacent to C=N bond (CH=N-NH-). Additionally, the aryl protons also identified similarly based on
cross—peak correlations in 'H-'*C HSQC spectra. The signal at 122.1 ppm which was assigned as C,~type aryl carbon showed cross—peak correlation with
a triplet at 7.79 ppm corresponding to H,~type proton. The signal at 122.4 ppm which was assigned as C~type aryl carbon showed cross—peak correlation
with triplet resonance at 7.14 ppm corresponding to H—~type proton.  The signal at 126.6 ppm which was assigned as Ctype aryl carbon showed cross—
peak correlation with a triplet at 7.32 ppm corresponding to H~type proton. The signals at 127.0 ppm and 130.0 ppm (which were assigned as C,~type and
Cy—type aryl carbon, respectively) showed cross—peak correlation with two doublet resonance at 7.87 ppm and 8.04 ppm corresponding to H,~type and H,—
type protons, respectively. The signal at 128.7 ppm which was assigned as C,—type aryl carbon showed cross—peak correlation with a doublet resonance at

7.46 ppm corresponding to H,—type proton. Thus, 1D and 2D NMR spectroscopy were very helpful in deducing the molecular structure of compound 1.
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Fig. S11. Job’s plot for the evolution of binding stoichiometry between 1 and F- ion in DMSO solution.  The total concentration of [F-] and [1] was

1.0x105 M.
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Fig. S12. Benesi—Hildebrand plot of sensor 1 (1.0 x 10> M) using 1:2 stoichiometry for association between sensor 1 and fluoride ion. A, = 505 nm.
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Fig. S13. The linear dynamic fluorescence response for the titration of sensor 1 with F- to determine the limits of detection (LOD). The LOD was

calculated using the formula 3c/k, where ¢ = standard deviaition of blank (10 samples) and & = the slope of linear calibration curve.
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Fig. S14. Time—dependent fluorescence changes of sensor 1 (1 x 10-5 M) in the presence of 75 equiv. of F- in DMSO. 4., = 505 nm.
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Fig. S16. (a) UV—vis absorption spectra of sensor 1 (1 x 105 M) to various amounts of OH~ (as BuyN* salts). (b) Fluorescent absorption spectra of sensor 1

(1 x 105 M) to various amounts of OH~ (as BuyN* salts). 1, = 505 nm.
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The quenching constant was calculated from the spectral titration data by the equation [2!:

+
Iyl Ip 5L [¥]

Where, I, was the fluorescence intensity of sensor, / the fluorescence intensity obtained with fluoride ion, K, the quenching constant, [F] the concentration

of fluoride ion added. Linear fitting of the titration profiles resulted in a good linearity (correlation coefficient was over 0.99) (Fig. S19, Supporting

information) and the quenching constant was calculated to be 1.7 x 10 M! for 1.
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Fig. S19. Quenching curve between sensor 1 and fluoride ion. 4. = 505 nm.
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Fig. S20. The emission spectra (4, = 505 nm) of sensor 1(1 x 105 M) in DMSO in the presence of different concentrations of OH- followed by the addition

of 75 equiv. of fluoride anion in DMSO.
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Fig. S21. UV—vis absorption spectra of 1 (1 x 10~ M) after addition of 75 equiv. of F~ then 75 equiv. of various anions respectively.
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of the corresponding species are shown.
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