Supporting Information

Tailoring Carbon Nanotubes Surface with Maleic Anhydride for Highly

Dispersed PtRu Nanoparticles and Their Electrocatalytic Oxidation of Methanol

Bohua Wu*a, b, Chao Wang^{‡a}, Ying Cui^c, Liqiu Mao^c and Shanxin Xiong^b

^a Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and College of

Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, PR China.

^b College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology,

Xi'an, 710054, PR China.

^c College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081

PR China

^{*} Corresponding author. Tel./Fax: +86-29-85310825, E-mail address: wubohua2005@126.com.

[‡]E-mail address: c.wang@snnu.edu.cn.

1. ICP-AES analysis of electrocatalysts

Electrocatalysts	Pt (wt. %)	Ru (wt. %)	Atomic ratio of
			Pt:Ru
PtRu/CNT-C	14.36	4.73	1.57
PtRu/AO-CNT	10.73	4.24	1.31

Table S1. The results of ICP-MS for different CNT-based electrocatalysts

The composition of the prepared catalysts was determined by ICP-AES. There are 14.36 and 4.73 wt.% of Pt and Ru in PtRu/CNT-C, respectively, whereas 10.73 and 4.24 wt.% of Pt and Ru for PtRu/AO-CNTs, respectively. Note that the loading mass of the PtRu nanoparticles supported on CNT-C is higher than that on AO-CNTs. In addition, the atomic Pt-Ru ratio of PtRu/CNT-C is 1.57, which is slightly higher than that of PtRu/AO-CNT (1.31). It confirms the CNT-C is suitable support to anchor and grow metal nanoparticles.

Figure S1. FTIR spectra of PtRu/CNT-C.

Figure S2 TEM images of PtRu/CNT-C nanohybrids.

Figure *S3***.** Size distribution of PtRu nanoparticles of PtRu/CNT-C (a) and PtRu/AO-CNT (b) nanohybrids.

Figure S4. Cyclic voltammograms (specific activity) of PtRu/CNT-C (1) and PtRu/AO-CNT (2) nanohybrids in nitrogen-saturated 0.5 M $H_2SO_4 + 1.0$ M CH₃OH aqueous solution at a scan rate of 50 mVs⁻¹.

Figure S5. Linear sweep voltammetry of PtRu/CNT-C (1) and PtRu/AO-CNT (2) nanohybrids in nitrogen-saturated 0.5 M $H_2SO_4 + 1.0$ M CH₃OH aqueous solution at a scan rate of 50 mVs⁻¹.

Figure *S6* Comparison of the forward peak current at the first cycle (i_0) and recovery forward peak current (i_R) in the fresh methanol solution after long-term cyclic voltammograms scanning experiments (600 cycles) on PtRu/CNT-C and PtRu/AO-CNT nanohybrids