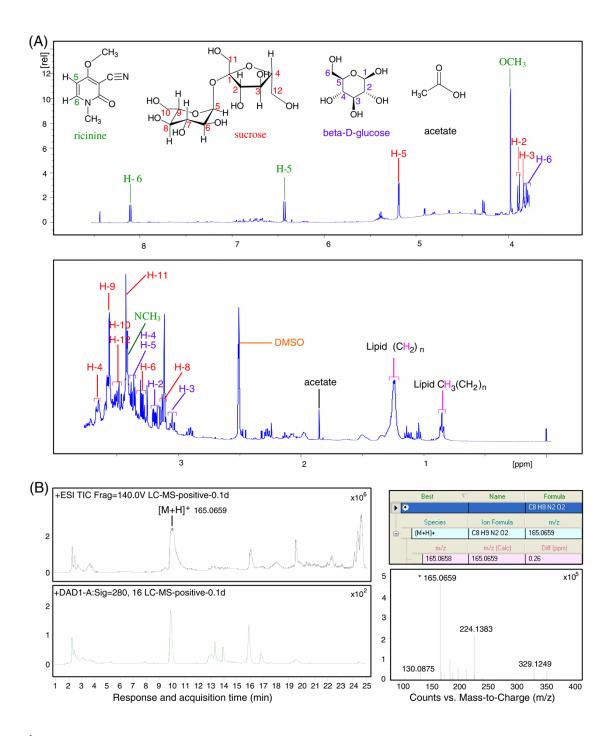
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

3 Chronic toxicity of crude ricinine in rats assessed by ¹H NMR

4 metabolomics analysis


1

2

5

8

- 6 Pingping Guo^{a†}, Dandan Wei^{a†}, Junsong Wang*^b, Ge Dong^a, Qian Zhang^a, Minghua
- 7 Yanga, Lingyi Kong*a
- ⁹ ^aState Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China
- 10 Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China. Fax/Tel: 86-25-8327-
- 11 1405; E-mail: <u>cpu_lykong@126.com</u>
- 12 bCenter for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiao Ling Wei
- 13 Street, Nanjing 210094, PR China. Tel: 86-25-8431-5512; E-mail: wang.junsong@gmail.com
- 15 *Corresponding author: Prof. Junsong Wang and Prof. Lingyi Kong
- 16 † These authors contributed equally to this work

Fig.S1 ¹H NMR (500 MHz, DMSO) spectrum (A) and LC-MS spectrum (B) of ricinine from CBS extract.

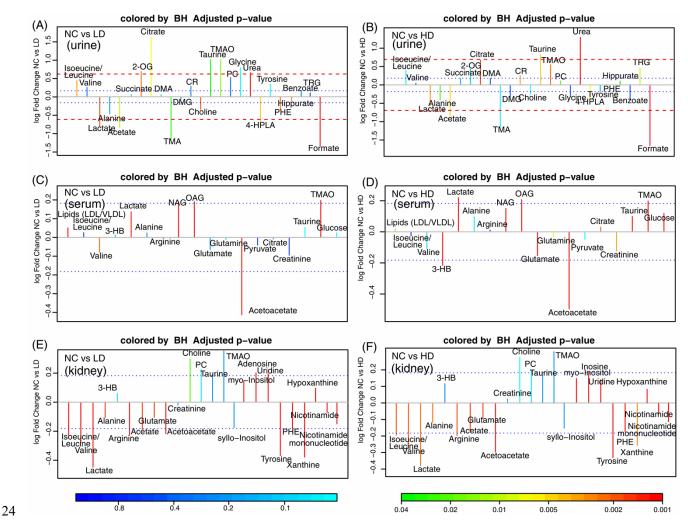


Fig.S2 Color-coded fold change plots adjusted by Benjamini-Hochberg method indicating significance of altered metabolites in LD rats (A, C, E) and HD rats (B, D, F). The blue dotted lines and red dashed lines representing an increase or decrease of 20% and 100%, respectively.

Table S1 Results of altered pathways in urine of HD group compared with NC

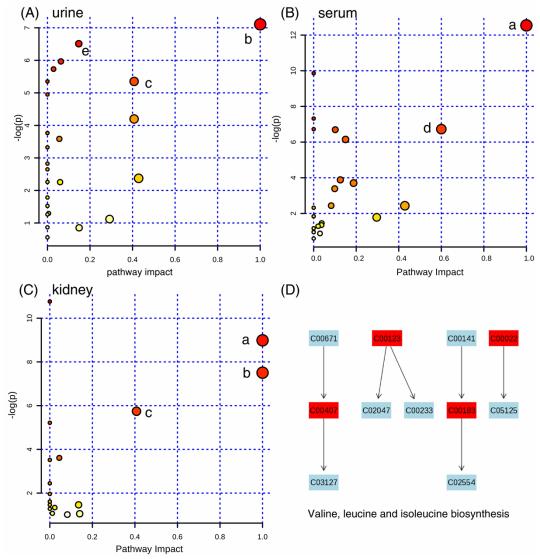

	Total	Expected	Hits	Raw p	-log(p)	Holm adjust	FDR	Impact
Phenylalanine, tyrosine and tryptophan	4	0.05	2	8.19E-04	7.11E+00	6.63E-02	6.03E-02	1.00
biosynthesis								
Citrate cycle (TCA cycle)	20	0.24	3	1.49E-03	6.51E+00	1.19E-01	6.03E-02	0.15
Alanine, aspartate and glutamate	24	0.29	3	2.56E-03	5.97E+00	2.03E-01	6.92E-02	0.06
metabolism								
Methane metabolism	9	0.11	2	4.74E-03	5.35E+00	3.70E-01	7.68E-02	0.00
Phenylalanine metabolism	9	0.11	2	4.74E-03	5.35E+00	3.70E-01	7.68E-02	0.41
Aminoacyl-tRNA biosynthesis	67	0.81	4	7.08E-03	4.95E+00	5.38E-01	9.56E-02	0.00
Glyoxylate and dicarboxylate metabolism	16	0.19	2	1.50E-02	4.20E+00	1.00E+00	1.74E-01	0.41
Butanoate metabolism	20	0.24	2	2.31E-02	3.77E+00	1.00E+00	2.34E-01	0.00
Pyruvate metabolism	22	0.27	2	2.77E-02	3.59E+00	1.00E + 00	2.50E-01	0.06
Ubiquinone and other terpenoid-quinone	3	0.04	1	3.60E-02	3.33E+00	1.00E+00	2.79E-01	0.00
biosynthesis								
Glycolysis or Gluconeogenesis	26	0.32	2	3.79E-02	3.27E+00	1.00E + 00	2.79E-01	0.03
D-Glutamine and D-glutamate metabolism	5	0.06	1	5.93E-02	2.83E+00	1.00E+00	4.00E-01	0.00
Cyanoamino acid metabolism	6	0.07	1	7.07E-02	2.65E+00	1.00E+00	4.41E-01	0.00
Taurine and hypotaurine metabolism	8	0.10	1	9.32E-02	2.37E+00	1.00E+00	5.31E-01	0.43
Nitrogen metabolism	9	0.11	1	1.04E-01	2.26E+00	1.00E+00	5.31E-01	0.00
Primary bile acid biosynthesis	46	0.56	2	1.05E-01	2.26E+00	1.00E + 00	5.31E-01	0.06
Selenoamino acid metabolism	15	0.18	1	1.68E-01	1.78E+00	1.00E+00	8.00E-01	0.00
Propanoate metabolism	20	0.24	1	2.18E-01	1.52E+00	1.00E + 00	9.80E-01	0.00
Glutathione metabolism	26	0.32	1	2.74E-01	1.29E+00	1.00E + 00	1.00E+00	0.01
Porphyrin and chlorophyll metabolism	27	0.33	1	2.83E-01	1.26E+00	1.00E+00	1.00E+00	0.00
Glycine, serine and threonine metabolism	32	0.39	1	3.26E-01	1.12E+00	1.00E + 00	1.00E+00	0.29
Tyrosine metabolism	42	0.51	1	4.06E-01	9.03E-01	1.00E + 00	1.00E+00	0.14
Arginine and proline metabolism	44	0.53	1	4.20E-01	8.67E-01	1.00E + 00	1.00E+00	0.00
Purine metabolism	68	0.82	1	5.73E-01	5.57E-01	1.00E + 00	1.00E+00	0.00

Table S2 Results of altered pathways in serum of HD group compared with NC

	Total	Expected	Hits	Raw p	-log(p)	Holm adjust	FDR	Impact
Valine, leucine and isoleucine biosynthe-	11	0.13	4	3.57E-06	1.25E+01	2.89E-04	2.89E-04	1.00
sis								
Aminoacyl-tRNA biosynthesis	67	0.76	6	5.23E-05	9.86E+00	4.18E-03	2.12E-03	0.00
Valine, leucine and isoleucine degrada-	38	0.43	4	6.62E-04	7.32E+00	5.23E-02	1.67E-02	0.00
tion								
D-Glutamine and D-glutamate	5	0.06	2	1.20E-03	6.73E+00	9.34E-02	1.67E-02	0.00
metabolism								
Synthesis and degradation of ketone bod-	5	0.06	2	1.20E-03	6.73E+00	9.34E-02	1.67E-02	0.60
ies								
Butanoate metabolism	20	0.23	3	1.24E-03	6.70E+00	9.40E-02	1.67E-02	0.10
Alanine, aspartate and glutamate	24	0.27	3	2.14E-03	6.15E+00	1.60E-01	2.47E-02	0.15
metabolism								
Citrate cycle (TCA cycle)	20	0.23	2	2.06E-02	3.88E + 00	1.00E + 00	2.08E-01	0.13
Pyruvate metabolism	22	0.25	2	2.47E-02	3.70E + 00	1.00E + 00	2.22E-01	0.19
Glycolysis or Gluconeogenesis	26	0.30	2	3.38E-02	3.39E+00	1.00E + 00	2.74E-01	0.10
Arginine and proline metabolism	44	0.50	2	8.74E-02	2.44E+00	1.00E + 00	5.94E-01	0.08
Taurine and hypotaurine metabolism	8	0.09	1	8.79E-02	2.43E+00	1.00E + 00	5.94E-01	0.43
Nitrogen metabolism	9	0.10	1	9.84E-02	2.32E+00	1.00E + 00	6.13E-01	0.00
Selenoamino acid metabolism	15	0.17	1	1.59E-01	1.84E+00	1.00E + 00	8.54E-01	0.00
Pantothenate and CoA biosynthesis	15	0.17	1	1.59E-01	1.84E+00	1.00E + 00	8.54E-01	0.00
Glyoxylate and dicarboxylate	16	0.18	1	1.69E-01	1.78E+00	1.00E + 00	8.54E-01	0.30
metabolism								
Starch and sucrose metabolism	23	0.26	1	2.34E-01	1.45E+00	1.00E + 00	1.00E+00	0.04
Galactose metabolism	26	0.30	1	2.60E-01	1.35E+00	1.00E + 00	1.00E+00	0.04
Cysteine and methionine metabolism	28	0.32	1	2.77E-01	1.28E+00	1.00E + 00	1.00E+00	0.02
Glycine, serine and threonine metabolism	32	0.37	1	3.10E-01	1.17E+00	1.00E + 00	1.00E+00	0.00
Pyrimidine metabolism	41	0.47	1	3.80E-01	9.68E-01	1.00E + 00	1.00E+00	0.00
Tyrosine metabolism	42	0.48	1	3.87E-01	9.49E-01	1.00E + 00	1.00E+00	0.00
Primary bile acid biosynthesis	46	0.52	1	4.15E-01	8.79E-01	1.00E + 00	1.00E+00	0.03
Purine metabolism	68	0.78	1	5.51E-01	5.97E-01	1.00E + 00	1.00E+00	0.00

Table S3 Results of altered pathways in kidney of HD group compared with NC

	Total	Expected	Hits	Raw p	-log(p)	Holm adjust	FDR	Impact
Aminoacyl-tRNA biosynthesis	67	0.67	6	2.12E-05	1.08E+01	1.71E-03	1.71E-03	0.00
Valine, leucine and isoleucine biosynthe-	11	0.11	3	1.25E-04	8.99E+00	1.00E-02	5.06E-03	1.00
sis								
Phenylalanine, tyrosine and tryptophan	4	0.04	2	5.50E-04	7.51E+00	4.34E-02	1.48E-02	1.00
biosynthesis								
Phenylalanine metabolism	9	0.09	2	3.20E-03	5.74E+00	2.50E-01	6.49E-02	0.41
Valine, leucine and isoleucine degrada-	38	0.38	3	5.44E-03	5.21E+00	4.19E-01	8.82E-02	0.00
tion								
Purine metabolism	68	0.68	3	2.70E-02	3.61E+00	1.00E + 00	3.43E-01	0.04
Ubiquinone and other terpenoid-quinone	3	0.03	1	2.97E-02	3.52E+00	1.00E + 00	3.43E-01	0.00
biosynthesis	_		_					
Ascorbate and aldarate metabolism	9	0.09	1	8.66E-02	2.45E+00	1.00E + 00	8.77E-01	0.00
Pantothenate and CoA biosynthesis	15	0.15	1	1.40E-01	1.96E+00	1.00E+00	1.00E+00	0.00
Pyruvate metabolism	22	0.22	1	1.99E-01	1.61E+00	1.00E + 00	1.00E+00	0.00
Glycolysis or Gluconeogenesis	26	0.26	1	2.31E-01	1.46E+00	1.00E + 00	1.00E+00	0.00
Galactose metabolism	26	0.26	1	2.31E-01	1.46E+00	1.00E + 00	1.00E+00	0.00
Inositol phosphate metabolism	26	0.26	1	2.31E-01	1.46E+00	1.00E + 00	1.00E+00	0.14
Glycerophospholipid metabolism	30	0.30	1	2.62E-01	1.34E+00	1.00E + 00	1.00E+00	0.02
Glycine, serine and threonine metabolism	32	0.32	1	2.77E-01	1.28E+00	1.00E + 00	1.00E+00	0.00
Pyrimidine metabolism	41	0.41	1	3.41E-01	1.07E+00	1.00E + 00	1.00E+00	0.01
Tyrosine metabolism	42	0.42	1	3.48E-01	1.06E+00	1.00E+00	1.00E+00	0.14
Arginine and proline metabolism	44	0.44	1	3.61E-01	1.02E+00	1.00E+00	1.00E+00	0.08

Fig. S3 Overview of altered metabolic pathways in urine (A), serum (B), kidney (C) and the pathway flowchart of most impacted valine, leucine and isoleucine biosynthesis (D) of HD rats compared with NC rats as visualized by bubble plots. Bubble area is proportional to the impact of each pathway, with color denoting the significance from highest in red to lowest in white. ((a) Valine, leucine and isoleucine biosynthesis; (b)Phenylalanine, tyrosine and tryptophan biosynthesis; (c) Phenylalanine metabolism; (d) Synthesis and degradation of ketone bodies; (e) TCA cycle).