Supporting Information

Fabrication of Electromagnetic Fe3O4@Polyaniline Nanofibers with High Aspect Ratio

Yong Ma, Mingtao Qiao, Yanhui Chen, Chunping Hou, Baoliang Zhang, Qiuyu Zhang* Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, P. R. China

Characterization

Fourier transform infrared spectra (FTIR) were obtained on a Bruker TENSOR 27 spectrometer. X-ray diffraction patterns (XRD) were got on a Shimadzu XRD-7000S diffractometer with $Cu_{k\alpha}$ radiation (λ =1.548Å) from 20° to 80°. X-ray photoelectron spectra (XPS) were gained through a Kratos Axis Ultra DDL spectroscopy.

Figure 1. Some representative SEM and TEM images of Fe₃O₄@PANI nanofibers.

Figure 2. FTIR spectra of Fe₃O₄ microspheres, Fe₃O₄@PANI nanofibers, and Fe₃O₄@PANI microspheres.

FTIR spectra of Fe₃O₄ microsperes, Fe₃O₄@PANI nanofibers, and Fe₃O₄@PANI

microspheres are shown in figure 2. For Fe₃O₄ microspheres, the characteristic absorption peaks present at 590cm⁻¹ assigned to Fe-O vibration. For Fe₃O₄@PANI nanofibers and Fe₃O₄@PANI microspheres, the characteristic absorption peaks at 1641, 1621, 1412, 1348, 1095, and 810 cm⁻¹ are related to C=C stretching vibration of quinoid rings and benzenoid rings, C-N stretching, C=N stretching, C-H bending in plane and out of plane in the 1,4-substituted phenyl ring, respectively. The relatively high intensity of a band at 635cm⁻¹ (Fe-O vibration in Fe₃O₄) in Fe₃O₄@PANI nanofibers and Fe₃O₄@PANI microspheres indicates the PANI coating shell is thin, which demonstrates that the PANI coating shell onto the Fe₃O₄ microspheres are successfully prepared.

Figure 3. XRD patterns of Fe₃O₄ microspheres, Fe₃O₄@PANI nanofibers, and Fe₃O₄@PANI microspheres.

Figure 3 shows the XRD patterns of the Fe₃O₄ microspheres, Fe₃O₄@PANI nanofibers, and Fe₃O₄@PANI microspheres. All detected diffraction peaks ((220) (311) (400) (422) (511) (440)) can be indexed as face centered cubic Fe₃O₄ (JCPDS Card No. 19-629). For the Fe₃O₄@PANI nanofibers and Fe₃O₄@PANI microspheres, the main peaks of them are the same as those of pristine Fe₃O₄ microspheres, which means that the crystal structure of Fe₃O₄ microspheres is well-maintained even if they experience the coating process in the acidic solution. Besides, a broad diffraction peak is found from 20° to 30°, which are contributed to the amorphous PANI.

Figure 4. XPS spectra of Fe₃O₄@PANI nanofibers and Fe₃O₄@PANI microspheres.

To further analyze the Fe₃O₄@PANI nanofibers and Fe₃O₄@PANI microspheres, XPS spectra was employed to understand the composition of their surface. In figure 4, for Fe₃O₄@PANI nanofibers and Fe₃O₄@PANI microspheres, it is clear that the main content of their surface is C, O, N elements. The binding energy of Fe2p is not obvious, which further supports that the Fe₃O₄ microspheres are confined within a shell of PANI coating shell, in accordance with the TEM images.