

Fig.S1 CV behavior of the α -Fe₂O₃/MWCNT/AuNPs modified GC electrode measured at different scan rates in 1 mM [Fe(CN)₆]^{3-/4-} in 0.1M KCl solution

Fig.S2 CV behavior of (a) bare (b) α -Fe₂O₃ (c) MWCNT (d) α -Fe₂O₃/MWCNT (e) α -Fe₂O₃/MWCNT/AuNPs (f) α -Fe₂O₃/MWCNT/AuNPs/ds-DNA modified GC electrode measured at 50mVs⁻¹ in 1 mM [Fe(CN)₆]^{3-/4-} in 0.1M KCl solution

Fig.S3 AFM image of α -Fe₂O₃ /MWCNT composite

Table S1 Effect of interference on RF determination for the α -Fe₂O₃/MWCNT/AuNPs modified electrode

Interfering species	Interferents concentration (µM)	Concentration ratio (Riboflavin: Interferents)	Recovery (%)
L-dopa	10	1:10	95
Serotonin	10	1:10	94
Epineprine	10	1:10	97
Cystamine	10	1:10	94
Dopamine	10	1:10	105
Tyrosine	10	1:10	102
Fe	100	1:100	94
Mg	100	1:100	108
Ca	100	1:100	96
Κ	100	1:100	95
NO ₃	100	1:100	93
NH ₄	100	1:100	96
Cl	100	1:100	95

Table S2

Determination of the riboflavin content in commercial pharmaceutical products by SWV on the α -Fe₂O₃/MWCNT/AuNPs modified electrode.

Sample	Reported content	Content found	Recovery
	(ing)	(ing)	%
1. multivitamin tablet	1.6	1.5	93.8
2. multivatimin capsule	2	1.81	90.5
3. Milk powder	0.78	0.85	91.7

Table S3

Electrode	limit of detection (M)	linear range (M)		reference
Aza / PCPE	5.3×10^{-10}	$1.33 \times 10^{-9} - 1.86 \times 10^{-4}$	[1]	
P3MT/GCE	5.0×10^{-8}	$1.0 \times 10^{-7} - 2.0 \times 10^{-4}$	[2]	
CILE	1.0×10^{-10}	$8.0 \times 10^{-10} - 1.1 \times 10^{-7}$	[3]	
Ag amalgam film	2.4×10^{-8}	$1.33 \times 10^{-7} - 8.0 \times 10^{-6}$	[4]	
Ds-DNA/ PCE	9.0×10^{-7}	$1.33 \times 10^{-6} - 1.86 \times 10^{-4}$	[5]	
AgSAEs	8.2×10^{-10} (m - AgSAE) and 1.3×10^{-9} (p-AgSAE)	-	[6]	
DNA/CNT	5.31 × 10 ⁻¹³	-	[7]	
$WO3 - TiO_2$	1.87 × 10 ⁻⁷	3.23×10^{-7} - 4.0×10^{-5}	[8]	
Cr- SnO2	1.07 × 10 ⁻⁷	0.2×10^{-6} - 1.0×10^{-4}	[9]	

Comparison of the efficiency of reported electrochemical methods in the determination of RF

References for Table S3

- 1 M. Kotkar, P.B. Desai and A.K. Srivastava, Sensor Actuat., B, 2007, 124, 90.
- 2. H. Zhang, J. Zhao, H. Liu and H. Wang, Int. J. Electrochem. Sci., 2010, 5, 295.
- 3 A. Safavi, N. Maleki, H. Ershadifar and F. Tajabadi, Anal. Chim. Acta, 2010, 674, 176.
- 4 Bas .S.Lakubowska and M.Girski, 2011, *Talanta*, 84, 1032.
- 5 A. Ensafi, E Heydari-Bafrooei and M. Amini, Biosens. Bioelectron., 2012, 31, 376.
- 6 L.Bandzuchova, R. Selesovska, T.Navratil and J. Chylkov, *Electrochim. Acta*, 2012, **75**, 316.
- 7 Y. Ly, H.S. Yoo, J.Y. Ahn and K.H. Nam, Food Chem., 2011, 127, 270.
- 8 Y. Li, P.C Hsu and S.M. Chen, Sensor Actuat. B, 2012, 174, 427.
- 9 N. Lavanya, S. Radhakrishnan, C. Sekar, and M. Navaneethan. Analyst, 2013, 138, 2061