Electronic Supporting Information (ESI) for

Denticulatains A and B: unique stilbene-diterpene heterodimers from Macaranga denticulata

Da-Song Yang,[‡]a Zi-Lei Li,[‡]a Xue Wang,^b Hui Yan,^c Yong-Ping Yang,^a Huai-Rong Luo,^c Ke-Chun Liu,^b Wei-Lie Xiao*^c, and Xiao-Li Li*^a

^a Key Laboratory of Economic Plants and Biotechnology; Germplasm Bank of Wild Species in Southwest China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
^b Biology Institute of Shandong Academy of Sciences, Jinan 250014, P. R. China
^c State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Scien

Kunming 650201, P. R. China

^{*} Corresponding author. E-mail: xwl@mail.kib.ac.cn and li_xiaoli11@mail.kib.ac.cn. Tel./fax: +86-871-65223231.

İ	These	authors	contributed	equally	to	this	work.
				1 2			

No.	Contents	Pages
1	Detailed experimental procedures	3
2	Figure S1. ¹ H NMR spectrum of denticulatain A (1)	5
3	Figure S2. ¹³ C NMR spectrum of denticulatain A (1)	6
4	Figure S3. HSQC spectrum of denticulatain A (1)	7
5	Figure S4. HMBC spectrum of denticulatain A (1)	8
6	Figure S5. ¹ H– ¹ H COSY spectrum of denticulatain A (1)	9
7	Figure S6. ROESY spectrum of denticulatain A (1)	10
8	Figure S7. ESIMS of denticulatain A (1)	11
9	Figure S8. HRESIMS of denticulatain A (1)	12
10	Figure S9. IR spectrum of denticulatain A (1)	14
11	Figure S10. UV spectrum of denticulatain A (1)	15
12	Figure S11. ORD spectrum of denticulatain A (1)	16
13	Figure S12. ¹ H NMR spectrum of denticulatain B (2)	17
14	Figure S13. ¹³ C NMR spectrum of denticulatain B (2)	18
15	Figure S14. HSQC spectrum of denticulatain B (2)	19
16	Figure S15. HMBC spectrum of denticulatain B (2)	20
17	Figure S16. ¹ H– ¹ H COSY spectrum of denticulatain B (2)	21
18	Figure S17. ROESY spectrum of denticulatain B (2)	22
19	Figure S18. ESIMS of denticulatain B (2)	23
20	Figure S19. HRESIMS of denticulatain B (2)	24
21	Figure S20. IR spectrum of denticulatain B (2)	26
22	Figure S21. UV spectrum of denticulatain B (2)	27
23	Figure S22. ORD spectrum of denticulatain B (2)	28

Contents of supporting information

Detailed experimental procedures

1. General experimental procedures.

Optical rotations were measured with a JASCO P–1020 digital polarimeter. UV data were obtained on a Shimadzu UV–2401A spectrophotometer. A Bruker Tenor 27 spectrophotometer was used for scanning IR spectroscopy with KBr pellets. 1D and 2D NMR spectra were recorded on Bruker AM–400 and DRX–500 spectrometers. Chemical shifts (δ) were expressed in ppm with reference to the solvent signals. ESIMS spectra were performed on a Finnigan MAT 90 instrument, HRESIMS were performed on a VG Autospec–3000 spectrometer. Column chromatography was performed with silica gel (200–300 mesh; Qingdao Marine Chemical, Inc., Qingdao, China), Lichroprep RP-18 gel (40–63 μ m, Merck, Darmstadt, Germany), and MCI gel CHP20P (75–150 μ m, Mitsubishi Chemical Corporation, Tokyo, Japan). Semipreparative HPLC was performed on a Hewlett-Packard instrument (column: Zorbax SB–C₁₈, 250 × 9.4 mm; DAD detector). Fractions were monitored by TLC and spots were visualized by heating silica gel plates sprayed with 15% H₂SO₄ in EtOH.

2. Plant material.

The fronds of *Macaranga denticulata* were collected from Xishuangbanna of Yunnan province, PR China, in March 2008. A voucher specimen (Yangyp–20080316) was deposited in the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences, which was identified by Prof. Yong-Ping Yang.

3. Antiangiogenesis assay.

Stock solutions (20 mg/mL) of all samples were prepared by dissolving the test compounds in 100% DMSO. These solutions were diluted in sterile salt water (5 mM NaCl, 0.17 mM KCl, 0.4 mM CaCl₂, 0.16 mM MgSO₄) to obtain final solutions of various concentrations in 0.2% DMSO. Aliquots were placed into 24-well plates, and embryos (TG[VEGFR2:GRCFP]) at 24 hpf (hours post-fertilization) were also transferred randomly into the above wells. Control embryos were treated with the

equivalent amount of DMSO solutions. All embryos were incubated at 28.5 $^{\circ}$ C. After 48 h treatment, the intersegmental vessels of embryos were visualized with green fluorescent protein labeling and endogenous alkaline phosphatase staining. The antiangiogenic activities of compounds were calculated from the inhibition ratio of antiangiogenesis.

4. Acetylcholinesterase inhibitory activity.

Acetylcholinesterase inhibitory activity of the compounds isolated was assayed by the spectrophotometric method developed by Ellman with slightly modification. *S*-Acetylthiocholine iodide, *S*-butyrylthiocholine iodide, 5,5'-dithio-bis-(2-nitrobenzoic) acid (DTNB, Ellman's reagent), acetylcholinesterase derived from human erythrocytes were purchased from Sigma Chemical. Compounds were dissolved in DMSO. The reaction mixture (totally 200 μ L) containing phosphate buffer (pH 8.0), test compound (50 μ M), and acetylcholinesterase (0.02 U/mL), was incubated for 20 min (30 °C). Then, the reaction was initiated by the addition of 40 μ L of solution containing DTNB (0.625 mM) and acetylthiocholine iodide (0.625 mM) for AChE inhibitory activity assay, respectively. The hydrolysis of acetylthiocholine was monitored at 405 nm every 3 minutes for one hour. Tacrine was used as positive control with final concentration of 0.333 μ M. All the reactions were performed in triplicate. The percentage inhibition was calculated as follows: % inhibition = (E – S)/E × 100 (E is the activity of the enzyme without test compound and S is the activity of enzyme with test compound).

Figure S7. ESIMS of denticulatain A (1)

Elemental composition calculator

Target m/z:	+539.3137	amu	
Tolerance:	+10.0000	ppm	
Result type:	Elemental		
Max num of res	sults: 100	0	
Min DBE:	-10.0000	Max DBE:	+60.0000
Electron state	e: Odd	AndEven	
Num of charges	s: 0		
Add water:	N/A		
Add proton:	N/A		
File Name:	111206ESIA	smdl-15a.wiff	

	Elements	Min Number	Max Number
1	2н	0	0
2	Br	0	0
3	С	0	200
4	Cl	0	0
5	F	0	0
6	Н	0	400
7	I	0	0
8	ĸ	0	0
9	N	0	0
10	Na	1	1
11	0	2	5

12	P	0	0
13	Pt	0	0
14	S	0	0
15	Si	0	0

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C34 H44 O4 Na	539.3137	-0.0300	-0.0556	12.5

Figure S8. HRESIMS of denticulatain A (1)

Figure S9. IR spectrum of denticulatain A (1)

Optical rotation measurement

P-1020 (A0 Sample	60460638) Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
14 (1/3)	Sp.Rot	22.2670	0.0167	13.2	Tue Dec 13 11:03:35 2011	Na	2 sec
-			0.0000	10.00	0.00750g/miMeOH	589nm	10 sec
				Cell	SMDL-15A		- 3.3.2
14 (2/3)	Sp.Rot	23.3330	0.0175	13.2	Tue Dec 13 11:03:49 2011	Na	2 sec + 32 . (333
			0.0000	10.00	0.00750g/mIMeOH	589nm	10 sec
				Cell	SMDL-15A		
14 (3/3)	Sp.Rot	22,0000	0.0165	13.3	Tue Dec 13 11:04:02 2011	Na	2 sec
	-		0 0000	10.00	0.00750g/mIMeOH	589nm	10 sec
		OH	2.2200	Cell	SMDL-15A		
	P-1020 (A0 Sample 14 (1/3) 14 (2/3) 14 (3/3)	P-1020 (A060460638) Sample Mode 14 (1/3) Sp.Rot 14 (2/3) Sp.Rot 14 (3/3) Sp.Rot	P-1020 (A060460638) Sample Mode Data 14 (1/3) Sp.Rot 22.2670 14 (2/3) Sp.Rot 23.3330 14 (3/3) Sp.Rot 22.0000 OH OH OH	P-1020 (A060460638) Sample Mode Data Monitor Blank 14 (1/3) Sp.Rot 22.2670 0.0167 14 (2/3) Sp.Rot 23.3330 0.0175 14 (3/3) Sp.Rot 22.0000 0.0165 0.0000 0.0000 0.0165 0.0000	P-1020 (A060460638) Data Monitor Blank Temp. Cell Temp Point 14 (1/3) Sp.Rot 22.2670 0.0167 13.2 14 (1/3) Sp.Rot 22.2670 0.0167 13.2 14 (2/3) Sp.Rot 23.3330 0.0175 13.2 14 (3/3) Sp.Rot 23.0000 0.0165 13.3 0.0000 10.00 Cell Cell 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 0.0000 10.00 Cell Cell 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 0.0000 10.00 Cell Cell	P-1020 (A060460638) Sample Mode Data Monitor Blank Temp. Cell Temp Point Date Comment Sample Name 14 (1/3) Sp.Rot 22.2670 0.0167 13.2 Tue Dec 13 11:03:35 2011 14 (1/3) Sp.Rot 22.2670 0.0167 13.2 Tue Dec 13 11:03:35 2011 14 (2/3) Sp.Rot 23.3330 0.0175 13.2 Tue Dec 13 11:03:49 2011 14 (3/3) Sp.Rot 23.0000 0.0165 13.3 Tue Dec 13 11:04:02 2011 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 Tue Dec 13 11:04:02 2011 0.0000 10.00 0.00750g/mlMeOH Cell SMDL-15A 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 Tue Dec 13 11:04:02 2011 0.0000 10.00 0.00750g/mlMeOH Cell SMDL-15A	P-1020 (A060460638) Sample Mode Data Monitor Blank Temp. Cell Date Light Filter 14 (1/3) Sp.Rot 22.2670 0.0167 13.2 Tue Dec 13 11:03:35 2011 Na 14 (1/3) Sp.Rot 22.2670 0.0167 13.2 Tue Dec 13 11:03:35 2011 Na 14 (2/3) Sp.Rot 23.3330 0.0175 13.2 Tue Dec 13 11:03:49 2011 Na 14 (3/3) Sp.Rot 23.000 0.0165 13.3 Tue Dec 13 11:04:02 2011 Na 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 Tue Dec 13 11:04:02 2011 Na 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 Tue Dec 13 11:04:02 2011 Na 0.0000 10.00 0.00750g/mlMeOH 589nm 589nm Cell SMDL-15A 14 (3/3) Sp.Rot 22.0000 0.0165 13.3 Tue Dec 13 11:04:02 2011 Na 0.0000 10.00 0.00750g/mlMeOH 589nm 589nm

Figure S12. ORD spectrum of denticulatain A (1)

ЪЮ

Figure S13. ¹H NMR spectrum of denticulatain B (2)

Elemental composition calculator

Target m/z: +539.3130 amu Tolerance: +10.0000 ppm Result type: Elemental Max num of results: 1000 Min DBE: -10.0000 Max DBE: +60.0000 Electron state: OddAndEven Num of charges: 0 Add water: N/A Add proton: N/A File Name: 111206ESIA smdl-15b.wiff

	Elements	Min Number	Max Number
1	2н	0	0
2	Br	0	0
3	С	0	200
4	cl	0	0
5	F	0	0
6	Н	0	400
7	I	0	0
8	ĸ	0	0
9	N	0	0
10	Na	1	1
11	0	2	5

12	P	0	0
13	Pt	0	0
14	s	0	0
15	Si	0	0

	Formula	Calculated m/z (amu)	mDa Error	PPM Error	DBE
1	C34 H44 O4 Na	539.3137	-0.7300	-1.3536	12.5

Figure S20. HRESIMS of denticulatain B (2)

Figure S21. IR spectrum of denticulatain B (2)

Optical rotation measurement

H

Ē

w.

ÓН

Model : No.	P-1020 (A0 Sample	60460638) Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
No.1	17 (1/3)	Sp.Rot	-28.2220	-0.0127 0.0000	13.5 10.00 Cell	Tue Dec 13 11:26:26 2011 0.00450g/mlMeOH SMDL-15B	Na 589nm	2 sec 10 sec
No.2	17 (2/3)	Sp.Rot	-29.7780	-0.0134 0.0000	13.5 10.00 Cell	Tue Dec 13 11:26:39 2011 0.00450g/mlMeOH SMDL-15B	Na 589nm	2 sec - 29. /// 10 sec - 29. ////
No.3	17 (3/3)	Sp.Rot	-29.3330	-0.0132 0.0000	13.5 10.00 Cell	Tue Dec 13 11:26:53 2011 0.00450g/mlMeOH SMDL-15B	Na 589nm	2 sec 10 sec
	HO		ОН	Figure S	S24. ORD spectr	rum of denticulatain B (2)		