Supporting Information

Sulfur-doped porous carbon nanosheets as an advanced electrode

material for supercapacitor

Wenfang Deng, Yijia Zhang, Lu Yang, Yueming Tan*, Ming Ma, and Qingji Xie

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

* Corresponding author. Tel./fax: +86 731 8865515

E-mail address: tanyueming0813@126.com

Sample	Atomic percentage (at%)				Weigh	Weight percentage (wt%)			
	С	0	S	C/O	С	0	S		
S-PCNS	92.09	4.02	3.89	22.9	85.41	4.97	9.62		
S-AC	89.08	7.45	3.47	12.0	82.28	9.17	8.55		

Table S1. The percentage of given elements in different samples obtained from XPS data.

	BET		External	Total pore	Micropore	Average
	surface	Micropore	surface area	volume (cm ³	volume (cm ³	pore
	area (m ²	area (m ² g ⁻¹)	(m ² g-1)	(em	a-1)	diameter
	g-1)		(III- g ·)	g ⁻)	g ·)	(nm)
S-PCNS	2005	585	1420	1.21	0.33	2.5
S-AC	2172	663	1509	1.34	0.38	2.7

Table S2. Textural properties of S-PCNS and S-AC.

Material	electrolyte	$C_{\rm s}({\rm F~g^{-1}})$	Ref.
S-PCNS	6 М КОН	312	This
		512	work
N, S-doped activated hydrothermal carbon derived	6 M KOH	264	S1
from human hair and glucose			
Sulfur-containing activated carbons	LiCl	~200	S2
S-doped micro/mesoporous carbon-graphene	6 M KOH	109	S3
composite			
Nitrogen and sulfur co-doped ordered mesoporous	2 M KOH	\leq 200	S4
carbon			
S-doped carbon/graphene composite	$1 \text{ M H}_2\text{SO}_4$	178	S5
Aromatic sulfur mediated mesoporous carbon	6 M KOH	191	S6
Graphene-based macro- and mesoporous frameworks	$1 \text{ M H}_2\text{SO}_4$	226	S7
Graphene-CNT networks	6 M KOH	180	S8
Few layer graphene and carbon nanotube foam	6 M KOH	286	S9
architectures			
Hybrid graphene/CNTs	30 wt % KOH	187	S10
Three-dimensional graphene hydrogel	$1 \text{ M H}_2\text{SO}_4$	~190	S11
Three-dimensional graphene gel	5 M KOH	152	S12
Mesoporous graphene nanoballs	1 M H ₂ SO ₄	206	S13
Three-dimensional hierarchical porous graphene-like	6 M KOH	305	S14
networks			

 Table S3. Comparison of specific capacitances of some sulfur-doped carbons and graphene

 materials in the literature.

Fig. S1 AFM image of S-PCNS.

Fig. S2 SEM (a, b) and TEM (c, d) images of S-AC.

Fig. S3 (a) TEM image of cobalt ion-impregnated sulfonic acid ion exchange resin after pyrolysis. (b) TEM image of cobalt ion-impregnated sulfonic acid ion exchange resin after pyrolysis followed by acid leaching.

Fig. S4 High resolution XPS spectrum of S2p peak for S-AC.

Fig. S5 (a) Cyclic voltammograms of S-AC in 6 M KOH aqueous solution at different scan rates. (b) Galvanostatic charge-discharge curves of S-AC at different current densities.

Fig. S6 SEM image (a), TEM image (b), XPS spectrum (c), Nitrogen adsorption/desorption isotherms (d), galvanostatic charge-discharge curves (e), and specific capacitance (f) of PCNS.

Reference

- [S1] W. Si, J. Zhou, S. Zhang, S. Li, W. Xing and S. Zhuo, *Electrochim. Acta*, 2013, 107, 397-405.
- [S2] W. Gu, M. Sevilla, A. Magasinski, A. B. Fuertes and G. Yushin, *Energy Environ. Sci.*, 2013, 6, 2465-2476.
- [S3] M. Seredych and T. J. Bandosz, J. Mater. Chem. A, 2013, 1, 11717-11727.
- [S4] D. Zhang, Y. Hao, L. Zheng, Y. Ma, H. Feng and H. Luo, J. Mater. Chem. A, 2013, 1, 7584-7591.
- [S5] M. Seredych, K. Singh and T. J. Bandosz, *Electroanalysis*, 2014, 26, 109-120.
- [S6] X. Zhao, Q. Zhang, C.-M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schl
 Ögl and D. S. Su, *Nano Energy*, 2012, 1, 624-630.
- [S7] Z. S. Wu, D. W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li and H. M. Cheng, Adv. Funct. Mater., 2010, 20, 3595-3602.
- [S8] B. You, L. Wang, L. Yao and J. Yang, Chem. Commun., 2013, 49, 5016-5018.
- [S9] W. Wang, S. Guo, M. Penchev, I. Ruiz, K. N. Bozhilov, D. Yan, M. Ozkan and C. S. Ozkan, *Nano Energy*, 2013, 2, 94-303.
- [S10] Y. Wang, Y. Wu, Y. Huang, F. Zhang, X. Yang, Y. Ma and Y. Chen, J. Phys. Chem. C, 2011, 115, 23192-23197.
- [S11] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang and X. Duan, ACS Nano, 2013, 7, 4042-4049.
- [S12] H. Huang, L. Xu, Y. Tang, S. Tang and Y. Du, Nanoscale, 2014, 6, 2426 -2433.
- [S13] J.-S. Lee, S.-I. Kim, J.-C. Yoon and J.-H. Jang, ACS nano, 2013, 7, 6047-6055.
- [S14] Y. Li, Z. Li and P. K. Shen, Adv. Mater., 2013, 25, 2474-2480.