Electronic Supplementary Material (ESI)

Uniformly Dispersed Silicon Nanoparticles/Carbon Nanospheres Composites as Highly Stable Lithium-ion Battery Electrodes

Whon-hee Lee,^a Da-Young Kang,^a Jung Sub Kim,^b Joong Kee Lee^b and Jun Hyuk Moon^{*,a}

^aDepartment of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea

^bEnergy Storage Research Center, Korea Institute of Science and Technology, Seoul, Korea

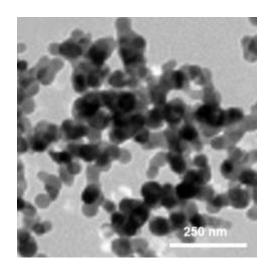
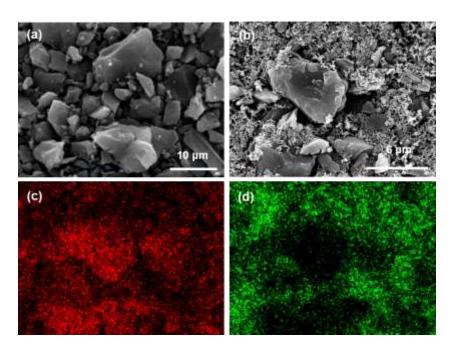
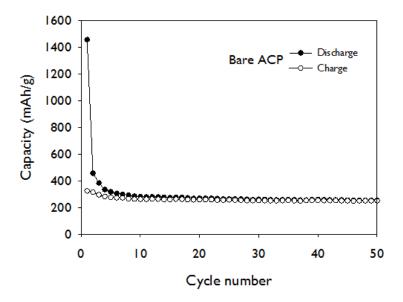




Fig. S1 TEM image of SNPs

Fig. S2 SEM images of (a) ACP, (b) SNP/ACP composite and (c, d) EDS mapping of C and Si, respectively.

Fig. S3 Specific capacity over charge/discharge cycle of the ACP electrode. The irreversible capacity of ACP was 1133 mAh/g. Compared to the irreversible capacity of CNS electrode (348 mAh/g), this value was several times larger. Thus this large irreversible capacity of ACP was attributed to its high specific area.