Cyclotetrasiloxane Frameworks for the Chemoenzymatic Synthesis of Oligoesters Electronic Supporting Information

Mark B. Frampton, * Tim R.B. Jones, and Paul M. Zelisko* Department of Chemistry and Centre for Biotechnology Brock University, St. Catharines, Ontario, Canada, L2S 3A1

Table 1 The expected molecular masses from MALDI-ToF MS for the observed chemical species in the N435-catalysed oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core during the first hour of the reaction.

Identity	Expected (M+Na) ⁺ (g/mol)	Identity	Expected (M+Na) ⁺ (g/mol)
AB	1,114	A ₂ B ₃ cyc	2,255
ABcyc	1,082	A ₂ B ₃ cyc ²	2,223
AB ₂	1,228	A_2B_4	2,401
AB ₂ cyc	1,196	A ₂ B ₄ cyc	2,369
AB ₂ cyc ²	1,164	$A_2B_4cyc^2$	2,337
AB ₃	1,342	A ₂ B ₄ cyc ³	2,305
AB ₃ cyc	1,310	A_2B_5	2,515
AB ₄	1,456	A ₂ B ₅ cyc	2,483
A ₂ B	2,059	A ₂ B ₅ cyc ²	2,451
A_2B_2	2,173	A_2B_6	2,629
A ₂ B ₂ cyc	2,141	A ₂ B ₆ cyc	2,597
A_2B_3	2,287	A_2B_7	2,743

Figure 1 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=1 min.

Figure 2 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=2 min.

Figure 3 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=3 min.

Figure 4 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=4 min.

Figure 5 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=5 min.

Figure 6 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=6 min.

Figure 7 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=7 min.

Figure 8 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=8 min.

Figure 9 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=9 min.

Figure 10 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=10 min.

Figure 11 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=20 min.

Figure 12 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=30 min.

Figure 13 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=40 min.

Figure 14 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=50 min.

Figure 15 MALDI-ToF MS spectrum of the N435-mediated oligomerization of octane-1,8-diol with each of the four ester units of the D_4 core at t=60 min.