Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

RSC Advances

RSCPublishing

Supplementary information

Experimental and computational exploration of the UV-visible properties of hexaniobate and hexatantalate ions

Cite this: DOI: 10.1039/xoxxooooox

Gauthier J-P. Deblonde, *a,b Aurélien Moncomble, $^{\rm c}$ Gérard Cote, a Sarah Bélair and Alexandre Chagnes $^{\rm a}$

Received ooth month 201X, Accepted ooth month 201X

DOI: 10.1039/x0xx00000x

www.rsc.org/

Fig S1. Absorbance (left axe, bottom points) and wavelength at maximum absorbance (right axe, top points) observed for hexaniobate solutions with different hydroxide concentrations. Equilibration time of 3h (squares), 11 days (triangles) and 35 days (crosses). T= 25 °C. $[Nb_6O_{13}]_{total}$ = 6.6*10⁻⁵ M.

Fig S2. Nb concentrations determined by ICP-AES and found by UV titration at 247.5 nm using ϵ Nb₆O₁₉= 15,900 L/mol/cm. Samples were prepared by dissolving either Na₇HNb₆O₁₉,15H₂O or K₈Nb₆O₁₉,16H₂O in 0.1 M NaCl (+), 0.1 M KCl (\Box), NaCl/KCl at I= 0.1 M (0), TMACl/TMAOH at I= 3 M (Δ), KCl/KOH at I= 3 M (\blacksquare), K₂C₂O₃/KOH at I= 3 M (\blacktriangle) and NH₄Cl/KOH at I= 3 M (\bullet).

Fig S3. Nb concentrations found by UV titration and theoretical concentration for samples of Nb(HC₂O₄)₅,nH₂O dissolved in water (o) and NbCl₅ dissolved in HCl (Δ). UV titration performed in 4 M KOH using ϵ Nb₆O₁₉= 15,900 L/mol/cm at 247.5 nm. The violet solid line, the grey dotted line, and the orange solid line correspond respectively to y= 1.05*x, y= x and y= 0.95*x.

