Supporting Information

A family of 3D lanthanide organic frameworks with tunable luminescence and slow magnetic relaxation

Qipeng Li,^{a,b} and Shaowu Du*a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
^b Graduate University of Chinese Academy of Sciences, Beijing 100039, PR China

Compound 1				
Sm1—O13 ⁱ	2.35 (2)	O8—Sm1 ^{iv}	2.572 (12)	
Sm1—O3 ⁱ	2.370 (4)	O13—Sm1 ^v	2.35 (2)	
Sm1—O1 ⁱⁱ	2.377 (4)	O1—Sm1 ⁱⁱ	2.377 (4)	
Sm1—O4 ⁱⁱⁱ	2.389 (4)	O7—Sm1 ^{iv}	2.479 (14)	
Sm1—O2	2.423 (4)	O3—Sm1 ^v	2.370 (4)	
Sm1—O9	2.450 (4)	O4—Sm1 ^{vi}	2.389 (4)	
Sm1—O7 ^{iv}	2.479 (14)	Sm1—O10	2.49 (2)	
Sm1—O6	2.483 (14)	Sm1—O5	2.55 (2)	
Sm1—O1	2.788 (4)	Sm1—O8 ^{iv}	2.572 (12)	
O13 ⁱ —Sm1—O3 ⁱ	69.7 (4)	O6 ^{iv} —O7—Sm1 ^{iv}	84 (3)	
O13 ⁱ —Sm1—O1 ⁱⁱ	77.6 (5)	C26—O7—Sm1 ^{iv}	94.1 (8)	
O3 ⁱ —Sm1—O1 ⁱⁱ	75.80 (15)	C14 ^{iv} —O7—Sm1 ^{iv}	83.1 (6)	
O13 ⁱ —Sm1—O4 ⁱⁱⁱ	131.1 (4)	C26—O8—Sm1 ^{iv}	90.0 (7)	
O3 ⁱ —Sm1—O4 ⁱⁱⁱ	133.41 (13)	O5—C14—Sm1	62.9 (11)	
O1 ⁱⁱ —Sm1—O4 ⁱⁱⁱ	71.33 (15)	O6-C14-Sm1	59.9 (8)	
O13 ⁱ —Sm1—O2	136.4 (4)	C15—C14—Sm1	179.2 (7)	
O3 ⁱ —Sm1—O2	78.88 (19)	O7 ^{iv} —C14—Sm1	59.3 (5)	
O1 ⁱⁱ —Sm1—O2	123.32 (14)	O8—C26—Sm1 ^{iv}	63.9 (7)	
O4 ⁱⁱⁱ —Sm1—O2	92.5 (2)	O7—C26—Sm1 ^{iv}	59.7 (7)	
O13 ⁱ —Sm1—O9	69.4 (5)	C17—C26—Sm1 ^{iv}	174.3 (7)	
O3 ⁱ —Sm1—O9	79.88 (13)	O6 ^{iv} —C26—Sm1 ^{iv}	59.3 (5)	
O1 ⁱⁱ —Sm1—O9	144.21 (15)	O4 ⁱⁱⁱ —Sm1—O6	77.5 (4)	
O4 ⁱⁱⁱ —Sm1—O9	142.61 (14)	O2—Sm1—O6	128.6 (3)	
O2—Sm1—O9	76.06 (17)	O9—Sm1—O6	82.3 (4)	

Table S1 Selected bond lengths (Å) and angles (°) for Compound 1

$O13^{i}$ — $Sm1$ — $O7^{iv}$	60.9 (4)	O7 ^{iv} —Sm1—O6	12.0 (2)
O3 ⁱ —Sm1—O7 ^{iv}	130.5 (2)	O13 ⁱ —Sm1—O10	122.4 (7)
O1 ⁱⁱ —Sm1—O7 ^{iv}	94.8 (4)	O3 ⁱ —Sm1—O10	138.6 (4)
O4 ⁱⁱⁱ —Sm1—O7 ^{iv}	84.8 (3)	O1 ⁱⁱ —Sm1—O10	142.4 (5)
O2—Sm1—O7 ^{iv}	138.7 (3)	O4 ⁱⁱⁱ —Sm1—O10	72.0 (6)
O9—Sm1—O7 ^{iv}	81.5 (4)	O2—Sm1—O10	66.4 (3)
O13 ⁱ —Sm1—O6	72.4 (4)	O9—Sm1—O10	70.7 (6)
O3 ⁱ —Sm1—O6	141.8 (3)	O7 ^{iv} —Sm1—O10	73.7 (4)
O1 ⁱⁱ —Sm1—O6	101.1 (3)	O6—Sm1—O10	62.5 (4)
O5—Sm1—O8 ^{iv}	110.8 (4)	O13 ⁱ —Sm1—O5	116.4 (6)
O13 ⁱ —Sm1—O1	133.1 (5)	O3 ⁱ —Sm1—O5	148.7 (4)
O3 ⁱ —Sm1—O1	67.22 (14)	O1 ⁱⁱ —Sm1—O5	135.0 (5)
O1 ⁱⁱ —Sm1—O1	74.57 (13)	O4 ⁱⁱⁱ —Sm1—O5	68.0 (5)
O4 ⁱⁱⁱ —Sm1—O1	72.78 (14)	O2—Sm1—O5	77.4 (3)
O2—Sm1—O1	48.87 (13)	O9—Sm1—O5	74.7 (5)
O9—Sm1—O1	118.98 (14)	O7 ^{iv} —Sm1—O5	63.3 (3)
O7 ^{iv} —Sm1—O1	157.2 (3)	O6—Sm1—O5	51.9 (3)
O6—Sm1—O1	149.8 (3)	O10—Sm1—O5	11.2 (4)
O10—Sm1—O1	102.3 (5)	O13 ⁱ —Sm1—O8 ^{iv}	10.1 (5)
O5—Sm1—O1	110.0 (4)	$O3^{i}$ —Sm1— $O8^{iv}$	79.0 (2)
O8 ^{iv} —Sm1—O1	139.1 (3)	O1 ⁱⁱ —Sm1—O8 ^{iv}	75.4 (3)
C1—O1—Sm1 ⁱⁱ	165.4 (4)	O4 ⁱⁱⁱ —Sm1—O8 ^{iv}	121.8 (3)
C1—O1—Sm1	85.9 (3)	O2—Sm1—O8 ^{iv}	145.6 (3)
Sm1 ⁱⁱ —O1—Sm1	105.43 (13)	O9—Sm1—O8 ^{iv}	74.4 (4)
C1—O2—Sm1	103.3 (4)	07 ^{iv} —Sm1—08 ^{iv}	51.9 (2)
C13—O3—Sm1 ^v	141.3 (4)	O6—Sm1—O8 ^{iv}	63.8 (3)
C13—O4—Sm1 ^{vi}	138.7 (4)	O10—Sm1—O8 ^{iv}	118.4 (5)
O1—C1—Sm1	69.3 (3)	C14—O5—Sm1	91.1 (12)

O2—C1—Sm1	52.5 (3)	O7 ^{iv} —O6—Sm1	84 (3)
C2—C1—Sm1	165.9 (5)	C14—O6—Sm1	94.2 (8)
C26 ^{iv} —O6—Sm1	82.8 (6)		
Symmetry codes: (i) x , $-y$ +	1/2, <i>z</i> -1/2; (ii) - <i>x</i> ,	-y+1, -z+1; (iii) -x, y+1/2	, - <i>z</i> +3/2; (iv) - <i>x</i> +1,
-y+1, -z+1; (v) x, -y+1/2, z	+1/2; (vi) - <i>x</i> , <i>y</i> -1/2	2, -z+3/2; (vii) -x+1, -y+1,	<i>-z</i> +2.

Compound 5				
Dy1—O1 ⁱ	2.304 (3)	O8—Dy1 ^{iv}	2.562 (19)	
Dy1—O3 ⁱⁱ	2.328 (3)	C26—Dy1 ^{iv}	2.833 (7)	
Dy1—O4 ⁱⁱⁱ	2.339 (3)	O13—Dy1 ^v	2.38 (2)	
Dy1—O2	2.366 (3)	Dy1—O5	2.475 (16)	
Dy1—O13 ⁱⁱ	2.38 (2)	Dy1—O8 ^{iv}	2.56 (2)	
Dy1—09	2.384 (3)	O1—Dy1 ⁱ	2.304 (3)	
Dy1—O7 ^{iv}	2.411 (12)	O3—Dy1 ^v	2.328 (3)	
Dy1—O6	2.442 (13)	O4—Dy1 ^{vi}	2.339 (3)	
Dy1—O10	2.450 (16)	O7—Dy1 ^{iv}	2.411 (12)	
O1 ⁱ —Dy1—O3 ⁱⁱ	77.59 (12)			
O1 ⁱ —Dy1—O4 ⁱⁱⁱ	72.12 (12)	O6 ^{iv} —O7—Dy1 ^{iv}	88 (3)	
O3 ⁱⁱ —Dy1—O4 ⁱⁱⁱ	131.39 (10)	C26—O7—Dy1 ^{iv}	95.7 (6)	
O1 ⁱ —Dy1—O2	123.39 (12)	$C14^{iv}$ — $O7$ — $Dy1^{iv}$	84.7 (5)	
O3 ⁱⁱ —Dy1—O2	78.87 (13)	C26—O8—Dy1 ^{iv}	89.1 (10)	
O4 ⁱⁱⁱ —Dy1—O2	87.06 (14)	O5-C14-Dy1	61.8 (8)	
O1 ⁱ —Dy1—O13 ⁱⁱ	77.8 (7)	O6-C14-Dy1	60.3 (7)	
O3 ⁱⁱ —Dy1—O13 ⁱⁱ	72.1 (4)	C15—C14—Dy1	179.6 (6)	
O4 ⁱⁱⁱ —Dy1—O13 ⁱⁱ	133.8 (6)	O7 ^{iv} —C14—Dy1	58.8 (4)	
O2—Dy1—O13 ⁱⁱ	139.1 (5)	O9—Dy1—C14	79.93 (18)	

Table S2 Selected bond lengths (Å) and angles (°) for Compound ${\bf 5}$

O1 ⁱ —Dy1—O9	145.48 (13)	O7 ^{iv} —Dy1—C14	36.5 (2)
O3 ⁱⁱ —Dy1—O9	79.88 (11)	O6—Dy1—C14	26.53 (19)
O4 ⁱⁱⁱ —Dy1—O9	141.33 (12)	O10—Dy1—C14	37.5 (3)
O2—Dy1—O9	76.62 (14)	O5—Dy1—C14	26.54 (18)
O13 ⁱⁱ —Dy1—O9	70.5 (7)	O8 ^{iv} —Dy1—C14	86.8 (3)
O1 ⁱ —Dy1—O7 ^{iv}	91.7 (3)	C1—O1—Dy1 ⁱ	172.1 (3)
O3 ⁱⁱ —Dy1—O7 ^{iv}	131.01 (17)	C1—O2—Dy1	108.1 (3)
O4 ⁱⁱⁱ —Dy1—O7 ^{iv}	87.4 (2)	C13—O3—Dy1 ^v	140.7 (3)
O2—Dy1—O7 ^{iv}	140.5 (3)	C13—O4—Dy1 ^{vi}	139.4 (3)
O13 ⁱⁱ —Dy1—O7 ^{iv}	58.9 (4)	O1—C1—Dy1	74.6 (2)
09—Dy1—07 ^{iv}	83.7 (3)	O2—C1—Dy1	48.6 (2)
Ol ⁱ —Dy1—O6	94.8 (3)	C2—C1—Dy1	162.9 (3)
O3 ⁱⁱ —Dy1—O6	142.8 (2)	C14—O5—Dy1	91.7 (9)
O4 ⁱⁱⁱ —Dy1—O6	77.7 (3)	O7 ^{iv} —O6—Dy1	81 (3)
O2—Dy1—O6	132.0 (2)	C14—O6—Dy1	93.2 (7)
O13 ⁱⁱ —Dy1—O6	70.7 (4)	C26 ^{iv} —O6—Dy1	83.0 (5)
O9—Dy1—O6	87.6 (3)	O10—Dy1—O5	11.3 (3)
O7 ^{iv} —Dy1—O6	11.7 (2)	O1 ⁱ —Dy1—O8 ^{iv}	75.6 (5)
O1 ⁱ —Dy1—O10	141.1 (3)	O3 ⁱⁱ —Dy1—O8 ^{iv}	78.7 (2)
O3 ⁱⁱ —Dy1—O10	139.1 (3)	O4 ⁱⁱⁱ —Dy1—O8 ^{iv}	126.9 (4)
O4 ⁱⁱⁱ —Dy1—O10	71.7 (4)	O2—Dy1—O8 ^{iv}	146.0 (4)
O2—Dy1—O10	68.1 (3)	O13 ⁱⁱ —Dy1—O8 ^{iv}	7.4 (7)
O13 ⁱⁱ —Dy1—O10	119.5 (7)	O9—Dy1—O8 ^{iv}	74.6 (5)
O9—Dy1—O10	69.7 (4)	07 ^{iv} —Dy1—O8 ^{iv}	52.5 (3)
O7 ^{iv} —Dy1—O10	73.1 (3)	O6—Dy1—O8 ^{iv}	64.2 (3)
O6—Dy1—O10	64.0 (3)	O10—Dy1—O8 ^{iv}	116.9 (5)
O1 ⁱ —Dy1—O5	133.1 (3)	O5—Dy1—O8 ^{iv}	109.5 (4)
O3 ⁱⁱ —Dy1—O5	149.0 (3)	O1 ⁱ —Dy1—C14	115.29 (18)

O4 ⁱⁱⁱ —Dy1—O5	68.4 (4)	O3 ⁱⁱ —Dy1—C14	157.66 (17)
O2—Dy1—O5	79.0 (2)	O4 ⁱⁱⁱ —Dy1—C14	70.95 (18)
O13 ⁱⁱ —Dy1—O5	113.3 (6)	O2—Dy1—C14	105.54 (17)
O9—Dy1—O5	74.1 (4)	O13 ⁱⁱ —Dy1—C14	92.1 (4)
O7 ^{iv} —Dy1—O5	62.7 (3)	O6—Dy1—O5	53.1 (3)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, -y+1/2, z-1/2; (iii) -x, y+1/2, -z+3/2; (iv) -x+1, -y+1, -z+1; (v) x, -y+1/2, z+1/2; (vi) -x, y-1/2, -z+3/2; (vii) -x+1, -y+1, -z+2.

Compound	Temperature	Lifetime(ms)	Ouantum Vielde D f) (nm)
	(K)	$ au_1$	Quantum Yields Ψ_{f}^{e}	∧ _{ex} (IIIII)
	298	0.3911	17.82%	280
2	77		38.65%	280
	10		48.01%	280
	298	0.8372	43.94%	310
4	77		49.97%	310
	10		56.22%	310

Table S3 The Quantum yields and lifetimes of compound 2 and 4

Scheme S1 The coordination modes of PIP^{2-} ligand in compound 1

Fig S1 X-ray powder diffraction (XRPD) patterns of compound 1 (Sm), 2 (Eu), 3 (Gd), 4 (Tb), 5 (Dy) and 6 (Ho)

Fig S2 TGA curves of compound 1 (Sm), 2 (Eu), 3 (Gd), 4 (Tb), 5 (Dy) and 6 (Ho)

Fig S3 Solid-state excitation and emission spectra for H₂PIP ligand at room temperature

Fig S4 Solid-state excitation and emission spectra for 2 at room temperature

Fig S5 Solid-state excitation and emission spectra for 4 at room temperature

Fig S6 The red line shows the Curie–Weiss fitting for 5-Dy.

Fig S7 The red line shows the Curie–Weiss fitting for 6-Ho.

Fig S8 The plot of M-H for 5-Dy.