Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for

"An X-ray absorption spectroscopy investigation of the coordination environment of electrogenerated Ni(II)-pseudohalide complexes arising from the anodic polarization of Ni electrodes in DMSO solutions of NCO⁻, NCS⁻ and NCSe⁻ ions"

Kethsiri H.K.L. Alwis¹, Bridget Ingham^{2,3}, Michael R. Mucalo¹*, Peter Kappen⁴, and Chris Glover⁴

¹Chemistry, School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton, New Zealand, 3240. ² Callaghan Innovation, PO Box 31310, Lower Hutt, New Zealand 5040. ³The MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand. ⁴Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia.

# parameters 6		
Independent points	27.6	
k-range	2.0 - 13.0	
R-range	1.0 - 5.0	
k-weights used	1, 2, 3	
Reduced χ^2	750	
$\Delta E_{o} [eV]$	-0.97 ± 0.57	
$\frac{\Delta E_{o} [eV]}{amp (S_{o}^{2})}$	-0.97 ± 0.57 0.78 ± 0.07	
$\begin{array}{l} \Delta E_{o} \ [eV] \\ amp \ (S_{o}{}^{2}) \\ ssia \ (\sigma^{2} \ for \ first \ single \ scattering \ path, \ Ni-O) \end{array}$	-0.97 ± 0.57 0.78 ± 0.07 0.0036 ± 0.0019	
$\begin{array}{l} \Delta E_{o} \ [eV] \\ \hline amp \ (S_{o}{}^{2}) \\ ssia \ (\sigma^{2} \ for \ first \ single \ scattering \ path, \ Ni-O) \\ ssi \ (\sigma^{2} \ for \ subsequent \ single \ scattering \ paths) \end{array}$	-0.97 ± 0.57 0.78 ± 0.07 0.0036 ± 0.0019 0.0029 ± 0.0005	
$\begin{array}{l} \Delta E_{o} \ [eV] \\ amp \ (S_{o}{}^{2}) \\ ssia \ (\sigma^{2} \ for \ first \ single \ scattering \ path, \ Ni-O) \\ ssi \ (\sigma^{2} \ for \ subsequent \ single \ scattering \ paths) \\ ss \ (\sigma^{2} \ for \ multiple \ scattering \ paths) \end{array}$	$\begin{array}{c} -0.97 \pm 0.57 \\ \hline 0.78 \pm 0.07 \\ \hline 0.0036 \pm 0.0019 \\ \hline 0.0029 \pm 0.0005 \\ \hline 0.0035 \pm 0.0005 \end{array}$	

Table S1. Parameters used to fit the NiO powder standard ('Sample 1'), shown in Figure 2 and Figure S1.

Figure S1. NiO powder standard ('Sample 1') EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Table S2. Parameters used to fit the Ni^{2+} in H_2O standard ('Sample 2'), shown in Figure 3 and Figure S2.

# parameters	7
Independent points	24.7
k-range	2.0 - 11.85
R-range	1.0 - 5.0
k-weights used	1, 2, 3
Reduced X ²	58
$\Delta E_{o} [eV]$	-2.17 ± 0.37
amp (S _o ²), 1 st path	4.00 ± 0.15
amp (S ₀ ²), 1 st path r, 1 st path	4.00 ± 0.15 2.054 ± 0.004
amp (S ₀ ²), 1 st path r, 1 st path ss, 1 st path	4.00 ± 0.15 2.054 ± 0.004 0.0023 ± 0.0006
amp (S_0^2) , 1^{st} pathr, 1^{st} pathss, 1^{st} pathamp (S_0^2) , 2^{nd} path	4.00 ± 0.15 2.054 ± 0.004 0.0023 ± 0.0006 5.75 ± 1.59
$\begin{array}{l} \text{amp} (\text{S}_{o}{}^{2}), i^{\text{st}} \text{ path} \\ \text{r}, i^{\text{st}} \text{ path} \\ \text{ss, } i^{\text{st}} \text{ path} \\ \text{amp} (\text{S}_{o}{}^{2}), 2^{\text{nd}} \text{ path} \\ \text{r, } 2^{\text{nd}} \text{ path} \end{array}$	4.00 ± 0.15 2.054 ± 0.004 0.0023 ± 0.0006 5.75 ± 1.59 4.070 ± 0.026

Figure S2. Ni(NO₃)₂ in H₂O ('Sample 2') EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Table S3. Parameters used to fit the Ni²⁺ in DMSO standard ('Sample 3'), shown in Figure 4 and Figure S3.

# parameters	9
Independent points	20.0
k-range	2.0 - 10.0
R-range	1.0 - 5.0
k-weights used	1, 2, 3
Reduced χ ²	111
$\Delta E_{o} [eV]$	-4.51 ± 0.56
amp (S _o ²), O path	4.14 ± 0.21
r, O path	2.053 ± 0.006
ss, all paths	0.0039 ± 0.0009
amp (S _o ²), S path	2.10 ± 0.27
r, S path	3.165 ± 0.011
amp (S _o ²), C paths	4.61 ± 0.65
r, C1 path	3.948 ± 0.029
r, C₂ path	4.157 ± 0.031

Figure S3. Ni(NO₃)₂ in DMSO ('Sample 3') EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Parameter	X = O	X = S	X = Se	echem X = O
# parameters	13	13	13	13
Independent points	20.0	20.0	20.0	20.0
k-range	2.0 - 10.0	2.0 - 10.0	2.0 - 10.0	2.0 - 10.0
R-range	1.0 - 5.0	1.0 - 5.0	1.0 - 5.0	1.0 - 5.0
k-weights used	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3
Reduced χ ²	126	232	253	34.4
ΔE_o (all paths)	-5.6 ± 1.3	-6.2 ± 1.2	-5.6 ± 2.2	-6.9 ± 1.5
σ² (DMSO paths)	0.006 ± 0.006	0.003 ± 0.002	0.003 ± 0.003	0.006 ± 0.010
σ² (NCX ⁻ paths)	0.003 ± 0.019	0.001 ± 0.008	0.008 ± 0.009	0.001 ± 0.015
scale (DMSO)ª	0.65 ± 0.24	0.64 ± 0.11	0.61 ± 0.18	0.60 ± 0.26
amp_S (DMSO)	1.69 ± 1.01	2.19 ± 0.44	1.58 ± 1.17	1.62 ± 1.31
amp (NCX ⁻)	0.95 ± 1.13	1.25 ± 0.74	1.58 ± 1.17	0.82 ± 0.92
r_O (DMSO)	2.047 ± 0.127	2.014 ± 0.017	2.041 ± 0.041	2.042 ± 0.066
r_S (DMSO)	3.147 ± 0.024	3.132 ± 0.016	3.134 ± 0.023	3.118 ± 0.025
r_C1 (DMSO)	3.939 ± 0.056	3.927 ± 0.046	3.955 ± 0.065	3.963 ± 0.059
r_C2 (DMSO)	4.163 ± 0.073	4.102 ± 0.058	4.127 ± 0.092	4.152 ± 0.082
r_N (NCX ⁻)	2.073 ± 0.352	2.155 ± 0.048	2.098 ± 0.181	2.033 ± 0.156
r_C (NCX ⁻)	2.735 ± 0.093	2.709 ± 0.041	2.817 ± 0.097	2.693 ± 0.098
r_X (NCX ⁻)	4.438 ± 0.112	4.632 ± 0.045	4.848 ± 0.061	4.431 ± 0.109

Table S4. Parameters used in single-scattering fits for NCX⁻ coordinated to a Ni(II) centre (X=O, S, and Se), shown in Figures S4-S7.

^a For the DMSO paths, $amp(O) = scale^{*}4.14$, $amp(C) = scale^{*}4.61$.

Figure S4. Ni-NCO 2:1 KOCN:Ni²⁺ mole ratio model solution in DMSO ('Sample 4'), fitted using a single shell model. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S5. Ni-NCS 2:1 KSCN:Ni²⁺ mole ratio model solution in DMSO ('Sample 5'), fitted using a single shell model. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S6. Ni-NCSe 2:1 KSeCN:Ni²⁺ mole ratio model solution in DMSO ('Sample 6'), fitted using a single shell model. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S7. Ni-NCO electrochemically generated solution in DMSO ('Sample 7'), fitted using a single shell model. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S8. Ni-NCO 2:1 KOCN:Ni²⁺ mole ratio model solution in DMSO ('Sample 4'), fitted using a single shell model for DMSO and a multiple-scattering model for OCN. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S9. Ni-NCS 2:1 KSCN:Ni²⁺ mole ratio model solution in DMSO ('Sample 5'), fitted using a single shell model for DMSO and a multiple-scattering model for SCN. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S10. Ni-NCSe 2:1 KSeCN:Ni²⁺ mole ratio model solution in DMSO ('Sample 6'), fitted using a single shell model for DMSO and a multiple-scattering model for SeCN. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).

Figure S11. Ni-NCO electrochemically generated solution in DMSO ('Sample 7'), fitted using a single shell model for DMSO and a multiple-scattering model for OCN. EXAFS data (black lines) and fits (red lines) in k-space (left) and R-space (right) for various k-weightings: k^1 (top), k^2 (middle), k^3 (bottom). The data ranges used for fitting are shown by the window functions (black dashed lines).