
Supporting Information for:

An ab initio study of TiS_{3:} a promising electrode material for rechargeable Li and Na ion batteries

Jian Wu,^a Da Wang,^a Hao Liu,^b Woon-ming Lau,^{a,b} and Li-Min Liu*^a

^aBeijing Computational Science Research Center, Beijing 100084, China ^bChengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, China

*Corresponding author: limin.liu@csrc.ac.cn

Fig. S1: Volume expansions computed upon Li and Na insertion in bulk TiS_3 (Li_x/Na_xTiS_3) for x=1,1.5 and 2, respectively.

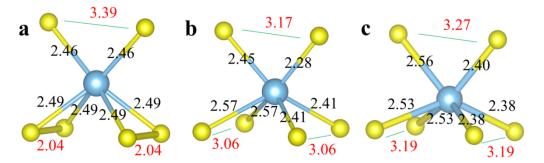
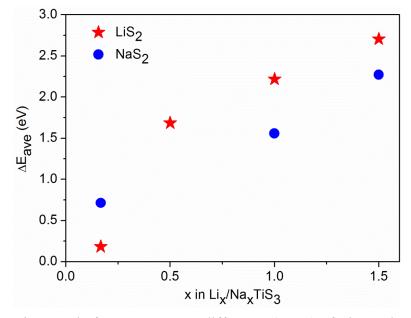



Fig. S2: Bond length of Ti atom and its neighbor sulfur atoms in bulk TiS_3 , Li_2TiS_3 and Na_2TiS_3 , respectively.

Fig. S3: Reaction trend of average energy difference (ΔE_{ave}) of Li₂S and Na₂S in monolayer Li_x/Na_xTiS₃, respectively.

Table. S1 Energy barriers (∇E) for Li and Na diffusion in bulk and monolayer TiS₃ (eV) with Li/Na atoms absorbed the whole H sites except an unoccupied H site, respectively.

∇E	Monolayer		Bulk	
	Li	Na	Li	Na
$H-T_1-H$	0.51	0.64	0.57	0.46
H-T ₂ -H	0.57	0.64	1.61	1.69