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A simple discussion about the calculation of static meniscus profile when the conical frusta 

contact the hexane.

A conical frustum with rise angle  is lowed to contact liquid surface vertically. When a liquid is 

contacted, it climbs along the solid surface and a meniscus is forced to develop. An illustration of liquid 

meniscus is presented in Figure S1a.

The curve profile of meniscus leads to the Laplace pressure difference  given by Laplace P

equation:
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where  is the radius of a circle of contact to the interfacial surface, which is in a plane perpendicular 1R

to the paper;  is the radius of a circle of contact which is in the plane of the paper, γ is the interfacial 2R

tension.

For the planar wall with the infinite curvature of , the balance of hydrostatic pressure with the 1R

Laplace pressureS1, S2:
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gives a solution of static meniscus shape (  and ):( 0) 0x   0)0(/ xdxdz

      (S3) 
 

1 cos / 2
2cos

sin / 2 2
x In C

 


       
    

            (S4)
_

2sin
2

z 


where the coordinate x and z are taken to be the horizontal and vertical directions (see Figure S1a), 

respectively; h is the location of intersection of liquid surface with the plate;  is the inclination angle 

of meniscus; The quantities with an overbar (-) indicate the length nondimensionalized by the capillary 

constant a; C is the integral constant.  Equilibrium ze of the meniscus can be given:
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where  is equilibrium contact angle of liquid on the solid surface.e

Figure S1b shows the catenary’s shape of the meniscus calculated by eq S3 and S4, which expresses 

that the shape is the same when the liquid is at the right or at the left of the solid wall. 

Dynamically, if assuming that pressure quickly equilibrates as the rise occurs, v=dh/dt can be 

expressed as eq. 6: . 
dt
dtv 
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Figure S1 a) Schematic illustration of the capillary rise around conical frustum, where the rise angle is 

,  is the inclination angle of meniscus, r0 is the bottom radius of conical frustum, h is the climb length 

along the side surface of conical frustum. b) The static meniscus shape calculated by eq S3 and S4.

Figure S2 Different states of liquid contacting rough ratchet-like sides. Blue line indicates the contact 

line of meniscus. (a) Complete wetting; (b) composite interfaces on the ratchet-like structures

Here, a rod is selected as the typical example of conical frustum. Obviously, due to the angles of  

and  from ratchet-like structures, the angle  (i. e. ) forms on the microstructures of rod. When 

the contact angle 0 of meniscus is beyond , liquid cannot completely invade the ratchet-like 

microstructures. So there are composite interfaces on the rough sides that composed by air, liquid and 

solid surface of rod (see Figure S2). The apparent contact angle can be expressed by Cassie equation (eq. 

3). But on the condition of 0≤, liquid completely invade the ratchet-like microstructures, i.e. at 

Wenzel state.
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Figure S3 Schematic diagram of the experimental setup.

Figure S4 The (h/a) versus (rx/a) plots of the Al conical frusta with various sizes during the capillary 

rise, where a is the capillary constant, for water, a = 2.7 mm: (a) = 30°, (b) 45°, (c) 60° and (d) 90°, 

respectively. The linear relations are found at the early stage of all curves ( =30°, 45°, 60° and 90°). 

The meniscus shape can be approximated by the simple linear relation of r = (k+cos)h where k is a 

constant.
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Figure S5 The plots of -  for solid rods corresponding to Figure 6: a) solid rods with different lg lg t

surface tensions; b) Al rods with d0 = 3, 4, 5, 20 and 30 mm.

Further discussion about the equilibrium and steady contact angle along the hair fiber during the 
meniscus rise.

The equilibrium contact angle can be theoretically defined by the famous Young equation. The 

surfaces considered in the Young equation are perfectly smooth and homogeneous and the state of the 

system is an equilibrium state. In our experimental situation, the hair fibers do not have smooth and 

homogeneous surfaces or to be in a true equilibrium state. Indeed, our meniscus profile is not fully 

equivalent to the “equilibrium” meniscus. Its contact angle should lie somewhere between those of the 

advancing and receding contact anglesS3. A theoretical approach to calculate the equilibrium angle was 

published by Tadmor S4. If advancing and receding contact angles result from the surface roughness and 

heterogeneity being distributed in an isotropic way on the surface, the resistance of the three-phase 

solid/liquid/air line to the motion out (advancing mode) will equal the resistance of the motion in 

(receding mode). Then an equation relating the advancing A, receding R, and equilibrium e contact 

angles is derived, 
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Figure S6 The typical plots of force versus time for different parts of hair during hair fiber contacts, 

immerses and then is withdrawn from the water: (a) at the middle and lower part of the single hair; (b) at 

its middle part.
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We complete the plots of capillary force versus time when hair fiber is immersed into water and then 

withdrawn at the velocity of 0.01 mm/s (see Figure S6a and b). The average values of A and R are 

calculated as ~98° and ~67° by the plots, respectively. The equilibrium contact angle is obtained by 

using eq. S1. It is theoretically obtained as 77°. In contrast with the observation in Fig. 8, the calculated 

contact angle is lower than the experimental one (~84°). So it is stressed that the measured contact angle 

by the static meniscus is only a steady one, not necessarily the equilibrium one. It is impossible to 

develop a meniscus at “zero” speed, so the measured contact angle on the hair is higher or lower than 

the equilibrium one. Similarly, it is true for the meniscus height.

Based on the above discussions, the wetting of hair fiber is complicated by pinning of the contact line. 

Pinning prevents the meniscus from reaching its equilibrium profile. We further calculate the pinning 

force of Fpinning as ~8.5 N by the difference between A and R: , where  02 cos cospinning R AF r    

r0 is the average radius of the hair fiber, and  is surface tension of liquid. The value is far more than the 

capillary force (~1.42N). 

In addition, it should be noticed that the aspects at different parts of hair fiber are not completely 

same. There are slightly different sizes (transitional sizes), microstructures and defects for them S5. In 

the experiments, we choose the middle parts of the hair (the length of ~8 mm) as the samples. Due to 

water absorption, hair fiber sample is only employed for one time in the experiment. But it still slightly 

different for the similar parts of the same hair (see the force curves in Fig. S6a and b). So we obtain the 

average immersion (advancing) forces or withdrawing (receding) ones for each round of experiments 

and then average them (three samples) as the final results. We calculate the advancing or receding 

angles by these average values. 
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Figure S7 The plots of wetting height (h, the square symbol of □) and contact angle (, the hollow 

circular symbol of ○) versus contacted time (t) for the hair fiber during the capillary rise of water. 

Obviously, there is few data to show the whole process.

Figure S8 Optical images of an unclean hair fiber contacting the water. Even if water surface is 

deformed a little, capillary rise cannot occur.

Video S1 Oscillations of the whole meniscus wetting along the surface of Al sample with d0 =3 mm and 

=60°.

Video S2 Dynamic meniscus of hexane along the clean hair fiber.

Video S3 Dynamic meniscus of water along the clean hair fiber.
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