Electronic Supporting Information for

Fluorinated Polyhedral Oligomeric Silsesquioxane

Xiaobai Wang,[†] Qun Ye,[†] Jing Song,[†] Ching Mui Cho,[†] Chaobin He,^{†,‡} Jianwei Xu^{†,*}

 [†] Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Republic of Singapore 117602
[‡] Department of Materials Science & Engineering, National University of Singapore, 5 Engineering Drive 2, Republic of Singapore 117576 jw-xu@imre.a-star.edu.sg

1. Instrumentation

¹H, ¹³C NMR, ²⁹Si nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DRX 400 MHz spectrometer in CDCl₃ at room temperature. Spectrometer operating frequencies were 400.13 MHz (¹H), 100.61 MHz (¹³C), and 79.46 MHz (²⁹Si). Tetramethylsilane was used as an internal standard for ¹H, ¹³C, and external standard for ²⁹Si NMR spectra. ¹⁹F NMR spectra (operating frequencies: 276.47 MHz) were recorded on AV400 MHz, and instrument default calibration (CFCl₃) was used. Thermogravimetric analysis (TGA) was performed in a Perkin-Elmer thermogravimetry (DSC) experiments were studied on a TA instrument DSC 2920 under a heating and cooling rate of 10 °C/min in nitrogen. Elemental analysis was conducted on a Perkin-Elmer 240C elemental analyzer for C, H, and S determination at the Chemical and Molecular Analysis Center, Department of Chemistry, National University of Singapore.

Spin coating for water contact angle was conducted on Rame-Hart Contact angle goniometer, with 5 wt.% of FluoroPOSS in PMMA solution (10 mg/mL in CHCl₃).

Atomic Force Microscopy (AFM) experiments: FluoroPOSS was dissolved in mr-I PMMA (bought from Micro Resist Technology GmbH) at a concentration of 0.3 mg/mL and 1 mg/mL. The rotation speed during spin coating was set 2000 rpm and last for 30s. Nanotribology experiments were performed by a Nanoscope III scanning probe microscopy (Veeco-Digital Instruments (DI), Santa Barbara). Commercially available V shaped Si_3N_4 cantilevers (DI) were used. Each cantilever was calibrated after a given experiment by measuring the thermal excitation of the tip to compute its spring constant. Tapping mode AFM scans was performed in air using a non-coated silicon tip with a spring constant of 10 N/m~20N/m (Nanosensors, Wetzlar, Germany). Features on the nanometer scale were imaged on a minimum of three different areas on the sample.

2. NMR spectra

Figure S1: ¹H NMR of compound **2a** in CDCl₃ at room temperature.

Figure S2: ¹H NMR of compound **2b** in CDCl₃ at room temperature.

Figure S3: ¹H NMR of compound **2c** in CDCl₃ at room temperature.

Figure S4: ¹H NMR of compound **2d** in CDCl₃ at room temperature.

Figure S5: ¹H NMR of compound **2e** in CDCl₃ at room temperature.

Figure S6: ¹H NMR of compound **3a** in CDCl₃ at room temperature.

Figure S7: ¹H NMR of compound **3b** in CDCl₃ at room temperature.

Figure S8: ¹H NMR of compound 3c in CDCl₃ at room temperature.

Figure S9: ¹H NMR of compound **3d** in CDCl₃ at room temperature.

Figure S10: ¹H NMR of compound **3e** in CDCl₃ at room temperature.

Figure S11: ¹³C NMR of compound **3a** in CDCl₃ at room temperature.

Figure S12: ¹³C NMR of compound **3b** in CDCl₃ at room temperature.

Figure S13: ¹³C NMR of compound 3c in CDCl₃ at room temperature.

Figure S14: ¹³C NMR of compound **3d** in CDCl₃ at room temperature.

Figure S15: ¹³C NMR of compound **3e** in CDCl₃ at room temperature.

Figure S16: ²⁹Si NMR of compound **3a** in CDCl₃ at room temperature.

Figure S17: ²⁹Si NMR of compound **3b** in CDCl₃ at room temperature.

Figure S18: ²⁹Si NMR of compound **3c** in CDCl₃ at room temperature.

Figure S19: ²⁹Si NMR of compound **3d** in CDCl₃ at room temperature.

Figure S20: ²⁹Si NMR of compound **3e** in CDCl₃ at room temperature.

Figure S21: ¹⁹F NMR of compound **3a** in CDCl₃ at room temperature.

Figure S22: ¹⁹F NMR of compound **3b** in CDCl₃ at room temperature.

Figure S23: ¹⁹F NMR of compound 3c in CDCl₃ at room temperature.

Figure S24: ¹⁹F NMR of compound **3d** in CDCl₃ at room temperature.

Figure S25: ¹⁹F NMR of compound **3e** in CDCl₃ at room temperature.