Electronic Supplementary Information

Synthesis, Characterization and DFT Study of Oxorhenium(V) Complexes Incorporating Quinoline Based Tridentate Ligands[†]

Rupa Sarkar, Amar Hens and Kajal Krishna Rajak*

Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700 032, India

* To whom correspondence should be addressed. Email: kajalrajak@hotmail.com

Jadavpur University

Orbital	Energy (eV)	Contribution(%)					Main bond type
		Re	Cl	=0	Aromatic system	Imine	_
L+5	-1.3962	15	8	1	75	1	$p(Re) + \pi^*(L^1)$
L+4	-1.4411	26	15	2	53	3	$d(Re) + p(Cl) + \pi^{*}(L^{1})$
L+3	-2.3148	6	0	1	82	10	$\pi^*(L^1)$
L+2	-2.8332	53	1	17	26	3	$d(Re) + \pi^*(O) + \pi^*(L^1)$
L+1	-3.1146	23	1	8	51	17	$d(Re) + \pi^{*}(L^{1})$
LUMO	-3.5543	46	6	19	19	10	$d(Re) + \pi^*(O) + \pi^*(L^1)$
HOMO	-5.8523	35	10	1	53	1	$d(Re) + p(Cl) + \pi(L^1)$
H-1	-6.5868	22	17	0	59	1	$d(Re) + p(Cl) + \pi(L^1)$
H-2	-6.7335	2	5	1	81	11	$\pi(L^1)$
H-3	-7.5923	1	12	0	80	7	$p(Cl) + \pi(L^1)$
H - 4	-7.9101	0	7	0	92	1	$\pi(L^1)$
H-5	-7.9942	1	78	9	12	1	$p(Cl) + \pi(L^1)$

Table S1 Frontier Molecular Orbital Composition (%) in the Ground State for $[Re^{V}O(L^{2})Cl_{2}]$, 2

Fig. S1 Linear correlation between the experimental and calculated ¹H NMR chemical shifts of **1** (\blacksquare) and **2** (\bullet).

Table S2 Main calculated optical transition for the complex $[Re^{VO}(L^2)Cl_2]$, **2** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in acetonitrile

Excit	Composition	E (eV)	Oscillator	λ_{theo}	Assign	λ_{exp}
ation			strength	(nm)		(nm)
1	HOMO – 1 \rightarrow LUMO (2%)	2 6569	0 0709	466 65	d_d/ILCT/LLCT	456
1	$HOMO - 1 \rightarrow LUMO + 1 (13\%)$	2.0000	0.0709	100.00	d-d/ILCT/LLCT	100
	$HOMO \rightarrow LUMO + 2 (79\%)$				d–d/ILCT/LLCT	
2	$HOMO \rightarrow LUMO + 2 (69\%)$	3.3512	0.0612	369.96	d–d /ILCT/LLCT	375
	HOMO \rightarrow LUMO + 4 (21%)				d-d/ILCT/LLCT	
3	$HOMO - 8 \rightarrow LUMO (3\%)$	3.7666	0.0221	329.16	LMCT/ILCT/LLCT	318
	HOMO – 7 \rightarrow LUMO (39%)				LMCT/ILCT/LLCT	
	HOMO – 5 \rightarrow LUMO (10%)				LMCT/ILCT/LLCT	
	$HOMO - 4 \rightarrow LUMO (32\%)$				LMCT/ILCT/LLCT	
4	$HOMO - 10 \rightarrow LUMO + 2 (55\%)$	4.7511	0.0258	260.96	LMCT/ILCT/LLCT	256
	$HOMO - 9 \rightarrow LUMO + 1 (10\%)$				LMCT/ILCT/LLCT	
	$HOMO - 9 \rightarrow LUMO + 2 (8\%)$				LMCT/ILCT/LLCT	
	$HOMO \rightarrow LUMO + 7 (5\%)$				MLCT/ILCT/LLCT	
	$HOMO \rightarrow LUMO + 9 (5\%)$				MLCT/ILCT/LLCT	
	$HOMO \rightarrow LUMO + 10 (2\%)$				MLCT/ILCT/LLCT	
5	$HOMO - 15 \rightarrow LUMO (3\%)$	5.0294	0.0126	246.52	LMCT/ILCT/LLCT	230
	$HOMO - 14 \rightarrow LUMO (22\%)$				LMCT/ILCT/LLCT	
	$HOMO - 13 \rightarrow LUMO (6\%)$				LMCT/ILCT/LLCT	
	$HOMO - 11 \rightarrow LUMO + 1 (7\%)$				LMCT/ILCT/LLCT	
	$HOMO - 11 \rightarrow LUMO + 2 (10\%)$				LMCT/ILCT/LLCT	
	$HOMO - 5 \rightarrow LUMO + 3 (15\%)$				ILCT/LLCT	
	$HOMO - 3 \rightarrow LUMO + 5 (3\%)$				LMCT/ILCT/LLCT	

Fig. S2 Isodensity plots of frontier orbitals of $[Re^{V}O(L^{2})Cl_{2}]$.

		Hole	Electron
456 nm	S_5 w = 0.79 2.6569 eV f = 0.0709		
375 nm	S_{10} w = 0.69 3.3512 eV f = 0.0612		
318 nm	$S_{19} = 0.39$ 3.7666 eV f = 0.0221		
256 nm	$S_{42} w = 0.55 4.7511 eV f = 0.0258$		
230 nm	$S_{50} w = 0.22 5.0294 eV f = 0.0126$	A CAR	

Fig. S3 Natural transition orbitals (NTOs) for the complex **2** illustrating the nature of optically active singlet excited states in the absorption bands 456, 375, 318, 256 and 230 nm. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 20% to each excited state.

Fig. S4 Cyclic voltammogram of complex 1 in acetonitrile solution (scan rate 50 mV/s)

Fig. S5 Cyclic voltammogram of complex 2 in acetonitrile solution (scan rate 50 mV/s)

Fig. S6 ¹H NMR spectrum (in CDCl₃) of catalytic product obtained after column chromatography (using 5% ethylacetate in hexane) of the reaction mixture of *cis*cyclooctene (**R**), catalysts and TBHP (5.0–6.0 M in n-decane).

Fig. S7 ESI mass spectrum (in CDCl₃) of catalytic product obtained after column chromatography (using 5% ethylacetate in hexane) of the reaction mixture of *cis*cyclooctene (**R**), catalysts and TBHP (5.0–6.0 M in n-decane).