Supporting Information for

Hierarchical CdS Nanostructure by Lawesson's Reagent and its Enhanced Photocatalytic Hydrogen Production

Vikram U. Pandit,^a Sudhir S. Arbuj,^a Ranjit R. Hawaldar,^a Pradnya V. Kshirsagar,^a Amarsinh J. Deshmukh,^b Jalindar D. Ambekar, ^a Uttam P. Mulik,^a Suresh W. Gosavi, ^c Bharat B. Kale*^a

^aCentre for Materials for Electronic Technology (C-MET), Govt of India, Panchawati, Off

Pashan Road, Pune 411008, India. E-mail: kbbb1@yahoo.com, bbkale@cmet.gov.in; Fax: +91-

20-25898085; Tel: +91-20-25898390

^bNational Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pune-411008, India

^cDepartment of Physics, University of Pune, Pune-411007, India

S1: Photoreaction Set up

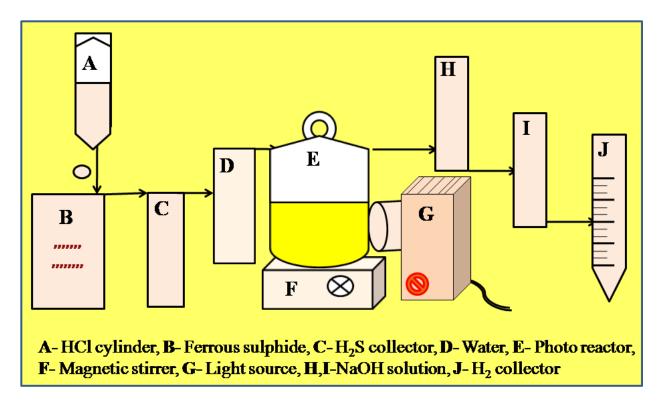
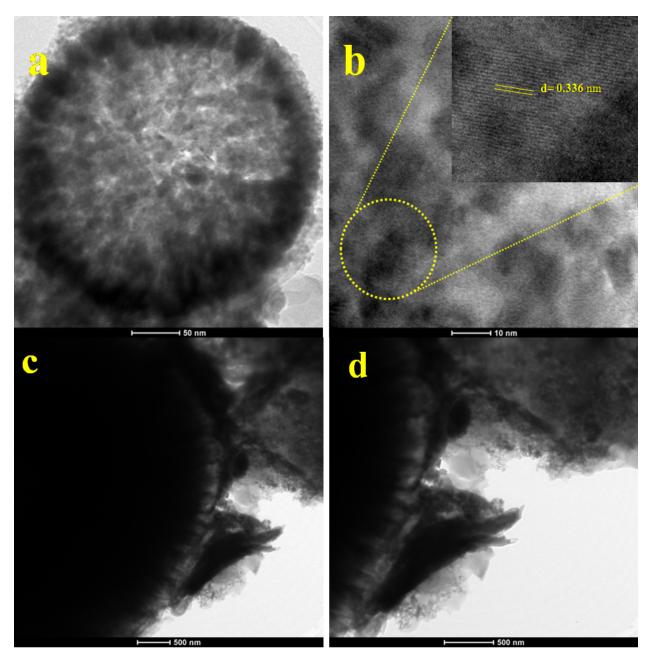
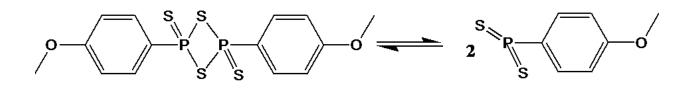
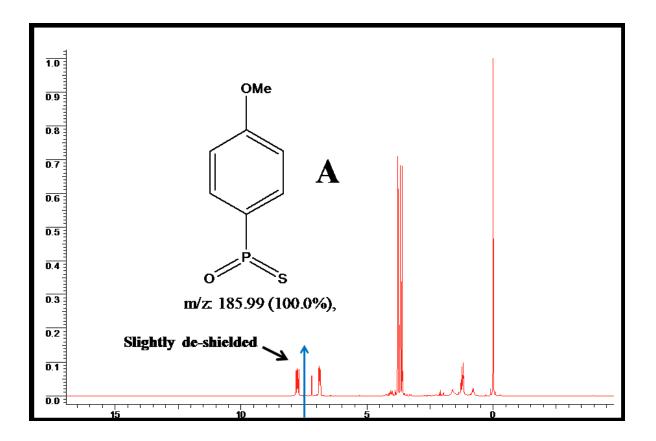


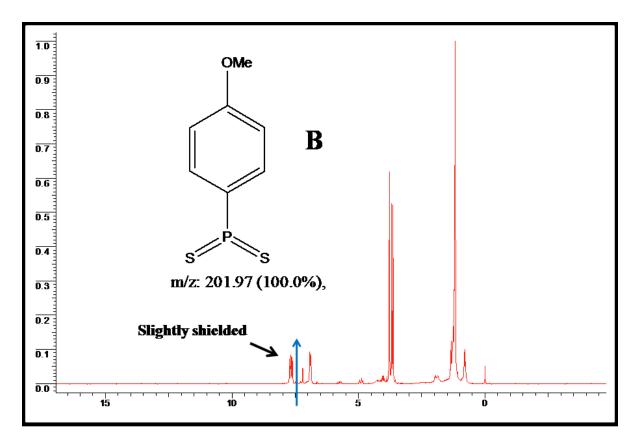
Fig. S1 Schematic representation of H₂S splitting setup.

S2: TEM of the CdS Nanostructures


Fig. S2. TEM images a, b) CdS nanostructures and c, d) Pt loaded CdS nanostructures.

Scheme S1: Reaction mechanism



Scheme S1. Formation mechanism for monomer (B).

S3 : NMR of products

Fig. S3 ¹H NMR spectrum for side product (A).

Fig. S4 ¹H NMR spectrum for side product (B).

Photocatalyst	Amount of	Amount of H ₂	Reference
	Photocatalyst	generation	No.
	[gram]	[µmol/h/g]	
CdIn ₂ S ₄	0.5	3,480.00	17
CdS	0.5	5,898.00	18
CdS _{0.5} Se _{0.5} /CdSe	1.0	8,164.53	19
Bi-GeO ₂	1.0	11,541.00	21
CdS-GeO ₂	0.5	7,560.00	22
ZnIn ₂ S ₄	0.5	5287.00	23
ZnS	1.0	2050.00	24
CdS-Glass	1.0	3,570.00	25
N-TiO ₂	1.0	8800.00	26
CdS	0.1	14,136.00	Present Work

Table S1 Comparison of CdS nanostructures with the earlier reports for $\rm H_2$ generation from $\rm H_2S$

Table S2 Recycle study of CdS nanostructures for H ₂ generation fr	om H ₂ S

Sr.	No. of Cycle H ₂ production in	
No.		µmol/h/gm
1	1 st run	14,136
2	2 nd run	13,824
3	3 rd run	13,589