Supporting information

Ruthenium complexes as inhibitors of human islet amyloid polypeptide aggregation, an effect that prevents beta cell apoptosis

Lijuan Ma[#], Yuanting Fu[#], Lianling Yu, Xiaoling Li^{*}, Wenjie Zheng, Tianfeng Chen^{*}

Department of Chemistry, Jinan University, Guangzhou 510632, China. E-mail: tchentf@jnu.edu.cn., tlxlli@jnu.edu.cn. # These authors contributed equally to the work.

1. Methods.

Synthesis and characterization of the Ru complexes.

The Ru complexes were prepared by literature methods with slight changes and the result we got is same as the reported literature¹⁻⁵. here we described a simplified syntfesis method. 1 mmol Hydrated rutrichloride (0.26 g) and 1.5 mmol the diimine ligands (bpy,0.24 g; phen, 0.27 g, pip, 0.43 g, phtpy,0.51 g) were mixed and stirred for 3 h at 80 °C until the solution colour no longer changed. After that, the solution were added a saturated aqueous NaClO₄ solution, then filtered off and dried in vacuo. The products were then purified by alumina column chromatography with toluene and methanol as eluant.

1.1. NAMI-A(**1**)

The complex NAMI-A was prepared according to the above procedure and get the same results as the reported literature¹. Yield 0.645 g, 55.8%.

1.2. $[Ru(bpy)_3](ClO_4)_2(2)$

The complex $[Ru(bpy)_3](ClO_4)_2$ was prepared according to the above procedure and get the same results as the reported literature². Yield 0.428 g, 75.8%. $[Ru(bpy)_3](ClO_4)_2 C_{30}H_{24}Cl_2N_6O_8Ru$ Anal. Calc. for $C_{30}H_{24}C_{12}N_6O_8Ru$:C 46.88, H 3.15,N 10.94. Found: C 46.94, H 3.41, N 10.81%.

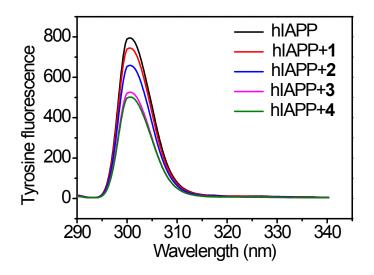
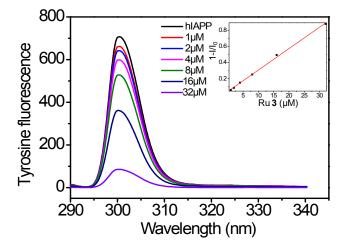
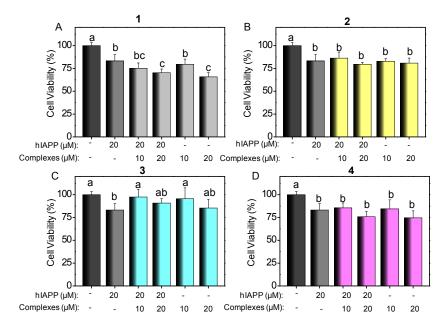
 $1.3 [Ru(pip)_3](ClO_4)_2(3)$

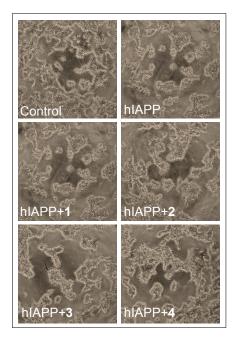
The complex $[Ru(pip)_3](ClO_4)_2$ was prepared according to the above procedure and get the same results as the reported literature.³ Yield 0.422 g, 58.4%. Anal. Calc. for $C_{57}H_{36}C_{12}N_{12}O_8Ru$: C, 57.58; H, 3.05; N, 14.14; Ru, 8.50; found (%): C, 57.56; H, 3.06; N, 14.15.

$1.4.[Ru(phtpy)(phen)Cl]ClO_4(4)$

The complex [Ru(phtpy)(phen)Cl]ClO₄ was prepared according to the above procedure and get the same results as the reported literature⁴. Yield 0.388 g, 42.4%. Anal. Calc. for $C_{33}H_{23}C_{12}N_5O_4Ru$:C 54.63, H 3.20,N 9.65. Found: C 54.39, H 3.41, N 9.71%.

2. Results


Figure S1 The Tyrosine fluorescence intensity of 10 μ M hIAPP after incubation in the absence or presence of 5 μ M Ru complexes in the dark room.

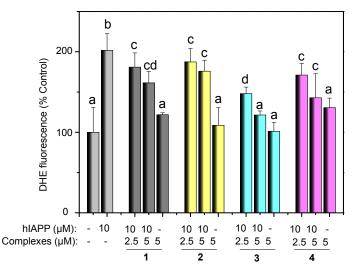

Figure S2. Tyrosine fluorescence intensity of hIAPP after incubation in the absence or presence of different concentration of complex **3**.

Figure S3. Dose-dependent protective effects of Ru complexes against hIAPP. was incubated with different concentrations of complexes 1(A), 2(B), 3(C) and 4(D) in INS-1 cells at 37 °C for 48 h. Bars with different characters are statistically different at *P*<0.05 level as analyzed by one-way ANOVA multiple comparison.

Figure S4. Morphological changes induced by hIAPP and the protective effects of Ru complexes. The cells were treated with 20 μ M hIAPP in combination with 5 μ M Ru complexes 1, 2, 3 and 4 at 37 °C for 48 h. Magnification: 100 ×.

Figure S5. Ru complexes reduce ROS generation induced by hIAPP. INS-1 cells were incubated with hIAPP (10 μ M) alone or with different Ru complexes (5 μ M) at 37 °C for 60 min. Changes in ROS level was determined by DHE fluorescence intensity. The fluorescence intensity of control that treated without hIAPP and Ru complexes was expressed as 100%. The Values represented were means ±SD from three independent experiments. Bars with different characters are statistically different at *P*<0.05 level as analyzed by one-way ANOVA multiple comparison.

References

- 1. A. H. Velders, A. Bergamo, E. Alessio, E. Zangrando, J. G. Haasnoot, C. Casarsa, M. Cocchietto, S. Zorzet and G. Sava, *J. Med.Chem.*, 2004, 47, 1110-1121.
- 2. M. Biner, H. Buergi, A. Ludi and C. Röhr, J. Am. Chem. Soc., 1992, 114, 5197-5203.
- 3. C.-W. Jiang, H. Chao, R.-H. Li, H. Li and L.-N. Ji, *Transition Met. Chem.*, 2002, 27, 520-525.
- 4. B.-w. Jing, W.-q. Wang, M.-h. Zhang and T. Shen, *Dyes Pigments*, 1998, 37, 177-186.
- 5. Z. Luo, L. Yu, F. Yang, Z. Zhao, B. Yu, H. Lai, K.-H. Wong, S.-M. Ngai, W. Zheng and T. Chen, *Metallomics*, 2014.