Oxidation of SO₂ and NO by epoxy groups on graphene oxides: The role of the hydroxyl group

Wanglai Cen, ^{1, 2} Meiling Hou, ¹ Jie Liu, ³ Shandong Yuan, ⁴ Yongjun Liu, ^{1, 2} Yinghao Chu^{1, 2*}

1. College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China;

2. National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, P.R.

China;

3. Department of Environment Engineering, Chengdu University of Information Technology,

Chengdu 610025, P. R. China.

4. Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065,

P.R. China.

Email: chuyinghao@scu.edu.cn (Associate Prof. Yinghao Chu)

Figure S1 Topviews of MEPs for SO_2 oxidation on (a) HO_OGP1 and (b) HO_OGP2. Since the FS1 is energetic favorable to FS2 by 0.03 eV, only the FS1 is reported as the final state in Figure 2 in the manuscript.

Figure S2 Topviews of MEPs for NO oxidation on (a) HO_OGP1 and (b) HO_OGP2.

Figure S3 Top and side views of an alternative MEP for NO oxidation on HO_OGP2. The charge difference plot of the IS is shown in Figure 6d in the manuscript. The adsorption energies for IS3 and FS3 are -0.14 and -0.64 eV, respectively. The oxidation barrier is 0.13 eV. For the MEP for NO oxidation on HO_OGP2 discussed in Figure 4 and Figure S3, the adsorption energies of IS2 and FS2 are -0.25 (see Table 1 in the manuscript) and -0.80 eV (see Table S2), respectively. Subsequently, only the more stable configurations and the oxidation process related are reported in the manuscript.

Figure S4 Orbit-projected density of states (PDOS) of adsorbed NO molecule. Each of the σ orbits is filled with 2e. The 1π is filled with 4e. Because the 2π is filled with 1e, three fourth of which is unoccupied, it is located at the Fermi level.

Figure S5 Topviews of MEPs for CO oxidation on (a) HO_OGP1 and (b) HO_OGP2. Since the FS1 is energetic favorable to FS2 by 0.1 eV, only the FS1 is reported as the final state in Figure 3 in the manuscript.

Entries -	non-spin polarized		spin polarized	
	D2	optB88-vdW	D2	$m(\mu_B)$
SO ₂ /OGP	-0.30	-0.46	-0.30	-0.0003
SO ₂ /HO_OGP1	-0.40	-0.55	-0.40	+0.0084
SO ₂ /HO_OGP2	-0.45	-0.61	-0.45	+0.0000
SO ₂ /2HO_OGP	-0.58	-0.72	-0.58	-0.0001
NO/OGP	-0.10	/	-0.10	+1.0053
NO/HO_OGP1	-0.54	/	-0.29	+0.2030
NO/HO_OGP2	-0.25	/	-0.20	+0.9714

Table S1 Adsorption energy (in eV) recheck for optB88-vdW and spin polarization.

Table S2 Oxidation barrier (in eV) recheck for spin polarization.

Reactions	non-spin polarized	spin polarized
SO ₂ /OGP→SO ₃ /GP	-0.21	-0.207
NO/HO_OGP1→NO ₂ /HO_GP	-0.11	-0.119

Table S3 Adsorption energy and charge transfer for the adsorption of SO₃, NO₂ and CO₂ on GP,

Conf.	$\Delta E_{\rm ads}$, eV	Δq , e
SO ₃ /GP	-0.31	0.080
SO ₃ /HO_GP	-0.46	0.290
SO ₃ /2HO_GP	-0.51	0.400
NO ₂ /GP	-0.49	0.344
NO ₂ /HO_GP	-0.80	0.407
CO ₂ /GP	-0.15	0.015
CO ₂ /HO_GP	-0.20	0.010

HO_GP and 2HO_GP surfaces. Only the values of the most stable configurations are collected.