Electronic Supplementary Information (ESI)

Highly sensitive detection of low-level water contents in organic solvents and cyanide in aqueous media using novel solvatochromic AIEE fluorophores

Wei Chen,^a Zhiyun Zhang, ^a Xin Li,*^b Hans Ågren^b and Jianhua Su*^a

^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China, Fax: (+86)-21-64252288, E-mail: <u>bbsjh@ecust.edu.cn</u>

^b Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden, E-mail: <u>lixin@theochem.kth.se</u>

Contents

1.	Solvatochromism	S2
2.	Calculated vertical transition information and dipole moment	S3
3.	Detection of low-level water	S4
4.	AIEE behaviours and optimized geometries	S6
5.	Detection of cyanide and supporting calculation	S7
6.	¹ H, ¹³ C NMR, HRMS and Crystal data for sensors and products	S11
7.	Full Listing for Reference 74	S15

1. Solvatochromism

		BDM					BDBM			
Solvent ^a	Δf^{b}	$E_{\rm T}^{\rm Nc}$	$\lambda_{abs}{}^d$ (nm)	λ _{em} ^e (nm)	$\Delta v^{\rm f}$ (cm ⁻¹)	$\Phi_F{}^{g}$ (%)	$\lambda_{abs}{}^d$ (nm)	λ_{em}^{e} (nm)	$\Delta v^{\rm f}$ (cm ⁻¹)	$\Phi_F{}^{g}$ (%)
Cyc	-0.0016	0.006	407	539	6017	7	400	544	6618	6
Hex	-0.0011	0.009	403	537	6192	5	400	541	6516	9
Tol	0.0132	0.099	396	580	8011	10	392	561	7685	11
Dio	0.0223	0.164	387	597	9089	8	385	572	8492	11
Et_2O	0.1641	0.117	393	607	8971	14	400	582	7818	10
THF	0.2096	0.207	389	615	9447	7	395	597	8566	6
DCM	0.2172	0.327	408	634	8737	3	404	606	8251	11
DMSO	0.2630	0.444	396	628	9329	<1	392	641	9510	1
BuOH	0.2644	0.586	394	615	9121	1	404	617	8545	2
MeCN	0.3055	0.460	390	637	9942	<1	395	630	9443	2

Table 1 Photophysical properties of BDM and BDBM in various solvents.

^a Abbreviations: Hex, n-Hexane; Cyc, Cyclohexane; Tol, Toluene; Dio, Dioxane; Et₂O, ethylether; THF, Tetrahydrofuran; DCM, Dichloromethane; DMSO, Dimethyl sulfoxide; BuOH, n-Butanol; MeCN, Acetonitrile. ^b $\Delta f = (\epsilon - 1)/(2\epsilon + 1) - (n^2 - 1)/(2n^2 + 1)$ accounts for the spectral shifts due to reorientation of the solvent molecules, called the orientation polarizability, where ϵ is solvent dielectric constant and n is index of refraction. ^c E_T^N , empirical parameters of solvent polarity. ^d λ_{abs} , absorption maximum wavelength. ^e λ_{em} , emission maximum wavelength. ^f Δv , Stokes shift. ^g Φ_F , fluorescence quantum yield.

Fig. S1 Absorption spectra of (a) BDM and (b) BDBM in different solvents. Concentration: $10 \mu mol \cdot L^{-1}$.

Fig. S2 Plot of Stokes shift (Δf) of **BDM** and **BDBM** versus Δv in different solvent.

2. Calculated vertical transition information and dipole moment

Fig. S3 Energy levels of frontier molecular orbitals of BDBM and BDM.

Table	S2	Computed	excitation	energies,	oscillator	strengths	and	molecular	orbital
compo	sitic	ons of low-l	ying excite	d states of	BDBM an	nd BDM.			

Compound	Compound State Excitation		Oscillator strength (f)	MO composition
		energy		
BDBM	BDBM S_1 2.90 eV, 426 nm		0.1077	H-0 \rightarrow L+0 (83%)
	S_2	3.24 eV, 382 nm	0.5008	H-0 \rightarrow L+1 (93%)
	S_3	3.82 eV, 324 nm	0.3145	$\text{H-1} \rightarrow \text{L+1} (29\%)$
				$\text{H-2} \rightarrow \text{L+1} \text{ (25\%)}$
				$\text{H-0} \rightarrow \text{L+2} \text{ (18\%)}$
				$\text{H-5} \rightarrow \text{L+0} \text{ (11\%)}$
	S_4	3.92 eV, 316 nm	1.0619	$\text{H-2} \rightarrow \text{L+0} (33\%)$
				$\text{H-1} \rightarrow \text{L+0} \text{ (54\%)}$
	S_5	4.04 eV, 306 nm	0.3180	$\text{H-0} \rightarrow \text{L+2} \ (66\%)$
				$\text{H-0} \rightarrow \text{L+0} (11\%)$
BDM	\mathbf{S}_1	2.93 eV, 423 nm	0.2107	$\text{H-0} \rightarrow \text{L+0} \text{ (86\%)}$
	S_2	3.73 eV, 332 nm	0.7414	$\text{H-0} \rightarrow \text{L+1} (79\%)$
	S_3	3.75 eV, 330 nm	0.3755	$\text{H-1} \rightarrow \text{L+0} \text{ (55\%)}$
				$\text{H-2} \rightarrow \text{L+0} \text{ (15\%)}$
	S_4	4.14 eV, 299 nm	0.0077	$\text{H-7} \rightarrow \text{L+0} (34\%)$
				$\text{H-2} \rightarrow \text{L+0} \text{ (27\%)}$
				$\text{H-1} \rightarrow \text{L+0} (10\%)$
	S_5	4.33 eV, 286 nm	0.0845	$\text{H-3} \rightarrow \text{L+0} \ (20\%)$
				$\text{H-7} \rightarrow \text{L+0} \text{ (19\%)}$
				$\text{H-1} \rightarrow \text{L+0} \text{ (17\%)}$
				$\text{H-5} \rightarrow \text{L+0} \text{ (12\%)}$
				$\text{H-6} \rightarrow \text{L+0} (11\%)$

Table S3 The dipole moments in the ground (μ_g) and the first excited (μ_e) states for BDM and BDBM.

	µ _g /Deby e	μ_e /Debye	$\Box \mu_e - \mu_g)$ /Deby e
BDM	9.7	22.9	13.2
		53	

BDBM	19.6	30.1	10.5
------	------	------	------

3. Detection of low-level water

Fig. S4 Absorption spectra of (a) BDM and (b) BDBM in THF solution in the presence of increasing amount of water.

Fig. S5 (a) Fluorescent peak intensity of **BDM** at 614 nm in THF (a) and at 597 nm in dioxane (c) with increasing water content. (b) Plot of fluorescent intensity change of **BDM** versus varied concentrations of H₂O in THF solution. $\lambda_{ex} = 400$ nm, $\lambda_{em} = 614$ nm, R² = 0.99592, k = -8145.3, $\sigma = 0.28$. The Standard deviation (σ) was obtained by fluorescence responses (10-times of consecutive scanning on the Varian Cary Eclipse Fluorescence Spectrophotometer). The detection limit was calculated by the formula $(3\sigma/|k|)$ giving the result of 0.010%. (d) Plot of fluorescent intensity change of **BDM**

versus varied concentrations of H₂O in dioxane solution. $\lambda_{ex} = 400$ nm, $\lambda_{em} = 597$ nm, R² = 0.98938, k = -6234.6, $\sigma = 0.39$. The Standard deviation (σ) was obtained as aforementioned and the detection limit was calculated as 0.019%.

Fig. S6 Fluorescence spectra of (a) BDM and (b) BDBM in dioxane solution in the presence of increasing amount of water.

4. AIEE behaviours and optimized geometries

Fig. S7 Absorption spectra of BDM (a) and BDBM (b) in DMSO/water mixtures with different water contents. Concentration: $10 \mu M$.

I abit 54	Table 54 computed nee energies of the compounds.					
Self-consistent field energy		Zero-point energy	Thermal correction	Relative free energy		
BDBM-s	-1837.60442530 a.u.	0.600123 a.u.	0.529692 a.u.			
BDBM-t	-1837.59839243 a.u.	0.600331 a.u.	0.526311 a.u.	7.5 kJ/mol, w.r.t. BDBM-s		
BDM-s	-1615.04011757 a.u.	0.596619 a.u.	0.531220 a.u.			
BDM-t	-1615.03486889 a.u.	0.596881 a.u.	0.528109 a.u.	6.3 kJ/mol, w.r.t. BDM-s		
				-		

Table S4 Computed free energies of the compounds.

Fig. S8 Calculated dihedral angles of compound BDBM and BDM.

5. Detection of cyanide and supporting calculation

Fig. S9 (a) Absorption spectral changes of **BDM** (20 μ M) upon the addition of 0-7.0 equiv. cyanide in 2 mM CTAB micellar solution. Insert: the images of **BDM** with different amount of cyanide (left: none; right: 7.0 equiv. cyanide). (b) Benesi–Hildebrand plot of absorbance at 326 nm. (c) Fluorescence spectra of **BDM** (20 μ M) upon addition of 0-7.0 equiv. cyanide in 2 mM CTAB micellar solution. Insert: the images of fluorescence with different amounts of cyanide (left: none; right: 7.0 equiv. cyanide). (d) Plot of fluorescence intensity versus cyanide concentration, $\lambda_{ex} = 400$ nm, $\lambda_{em} = 603$ nm, R² = 0.99893, k = -3.33 μ M⁻¹, $\sigma = 0.36$. The standard deviation (σ) was obtained by fluorescence responses (10-times of consecutive scanning on the Varian Cary Eclipse Fluorescence Spectrophotometer). The detection limit was calculated as 0.32 μ M by the formula (3 $\sigma/|k|$).

Fig. S10 ¹H NMR spectra of **BDM** in DMSO- d_6 upon addition of cyanide anion in CH₂Cl₂.

Fig. S11 MS (ESI-) spectrum of compound BDBM (10 μ M) with CN⁻ (25 μ M) in CH₂Cl₂ solution at 25 °C. Calcd for C₆₀H₆₆N₇⁻ = 884.54, found: 884.49.

Fig. S12 MS (ESI-) spectrum of compound BDM (10 μ M) with CN⁻ (15 μ M) in CH₂Cl₂ solution at 25 °C. Calcd for C₄₀H₃₂N₃⁻ = 554.26, found: 554.21.

Fig. S13 (a) Absorption spectra and (b) fluorescence of **BDBM** in CTAB micelles (2 mM) upon addition of various anions (CN⁻: 9.0 equiv., other anions: 45.0 equiv.). The corresponding colour (c) and emission (d) changes of **BDBM** in CTAB micelles (2 mM) upon addition of various anions. Concentration: 20 μ M; excitation wavelength: 400 nm.

Fig. S14 The fluorescence intensity changes at 601 nm of **BDBM** (20 mM) upon addition of 9.0 equiv. of CN⁻ and 45.0 equiv. of various interference anions.

Fig. S15 Optimized geometries of (left) [CN-BDBM-CN]²⁻ and (right) [CN-BDM]⁻.

Fig. S16 Frontier molecular orbitals of [CN-BDM]⁻.

Table S5 Computed excitation energies, oscillator strengths and molecular orbital compositions of low-lying excited states of [CN-BDBM-CN]²⁻ and [CN-BDM]⁻.

Compound	State Excitation		Oscillator strength (f)	MO composition
		energy		
[CN-BDBM-CN] ²⁻	\mathbf{S}_1	3.56 eV, 348 nm	0.4597	$\text{H-2} \rightarrow \text{L+0} \text{ (73\%)}$
				$\text{H-0} \rightarrow \text{L+0} \text{ (21\%)}$
	S_2	3.94 eV, 314 nm	0.0201	$\text{H-0} \rightarrow \text{L+1} \text{ (13\%)}$
	S_3	3.94 eV, 314 nm	0.0259	$\text{H-1} \rightarrow \text{L+1} (13\%)$
	S_4	4.42 eV, 280 nm	0.1482	$\text{H-1} \rightarrow \text{L+0} (29\%)$
				$\text{H-0} \rightarrow \text{L+1} \ (22\%)$
				$\text{H-2} \rightarrow \text{L+1} (13\%)$
	S_5	4.46 eV, 277 nm	0.0042	$\text{H-2} \rightarrow \text{L+1} (50\%)$
				$\text{H-1} \rightarrow \text{L+0} (24\%)$
[CN-BDM] ⁻	\mathbf{S}_1	3.47 eV, 356 nm	0.3927	$\text{H-1} \rightarrow \text{L+0} (87\%)$
	S_2	4.11 eV, 301 nm	0.0025	$\text{H-0} \rightarrow \text{L+16} (41\%)$
	S_3	4.31 eV, 287 nm	0.0291	$\text{H-0} \rightarrow \text{L+0} \text{ (63\%)}$
				$\text{H-0} \rightarrow \text{L+1} (10\%)$
	S_4	4.57 eV, 271 nm	0.0194	$\text{H-2} \rightarrow \text{L+0} (38\%)$
				$\text{H-1} \rightarrow \text{L+1} (35\%)$
	S_5	4.63 eV, 267 nm	0.1764	$\text{H-2} \rightarrow \text{L+0} \text{ (42\%)}$
				$H-1 \rightarrow L+1 (32\%)$

6. ¹H, ¹³C NMR, HRMS and Crystal data for sensors and products

Fig. S17 ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound 2.

Fig. S19 ESI-MS spectrum of compound 2.

Fig. S20 ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound BDM.

Fig. S21 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound BDM.

Fig. S22 ESI-MS spectrum of compound BDM.

Fig. S23 ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound 2.

Fig. S24 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound BDBM.

Fig. S25 ESI-MS spectrum of compound BDBM.

	BDBM
Empirical formula	$C_{42} H_{30} N_4$
Formula weight	590.7
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C 2/c
a	17.624(4) Å
b	13.658(3) Å
с	14.035(3) Å
α	90°
β	108.504(4)°
γ	90°
Volume	3203.8(11) Å ³
Z	4
Density (calculated)	1.225 Mg/m ³
Absorption coefficient	0.072 mm ⁻¹
F(000)	1240
Crystal size	0.211 x 0.175 x 0.123 mm ³
Theta range for data collection	1.926 to 25.999°.
Index ranges	-21<=h<=21, -16<=k<=16, -14<=l<=17
Reflections collected	9452
Independent reflections	3154 [R(int) = 0.0593]
Completeness to theta = 25.242°	99.90%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6353
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3154 / 0 / 211
Goodness-of-fit on F ²	1.032
Final R indices [I>2sigma(I)]	$R1 = 0.0643, wR_2 = 0.1528$
R indices (all data)	$R1 = 0.0799, wR^2 = 0.1670$
Extinction coefficient	0.0095(12)
Largest diff. peak and hole	0.343 and -0.285 e.Å ⁻³
CCDC number	1016979

 Table S6 Crystal data and structure refinement for compound BDBM.

7. Full Listing for Reference 74

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Lyengar, J. Tomasi, M. Cossi, N. Rega, J.
M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochtersk, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.