## Concentration dependent ratiometric turn-on selective fluorescence detection of picric acid in aqueous and non-aqueous media

Ashok Yadav and Ramamoorthy Boomishankar\*

Department of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune – 411008, India.

Fax: +912025908186; E-mail: boomi@iiserpune.ac.in

Table S1: Crystal data table

| Compound                                    | TAQP.3H <sub>2</sub> O |
|---------------------------------------------|------------------------|
| Chemical formula                            | C27 H27 N6 O4 P        |
| Formula weight                              | 530.52                 |
| Temperature                                 | 100(2)K                |
| Crystal system                              | Hexagoanal             |
| Space group                                 | P-3                    |
| a (Å); α (°)                                | 16.08(2); 90°          |
| b (Å); β(°)                                 | 16.08(2); 90°          |
| c (Å); γ (°)                                | 6.269(8); 120°         |
| $V(Å^3); Z$                                 | 1404(3); 2             |
| $\rho$ (calc.) mg m <sup>-3</sup>           | 1.255                  |
| $\mu$ (Mo K <sub>a</sub> ) mm <sup>-1</sup> | 0.140                  |
| $2\theta_{\text{max}}$ (°)                  | 56                     |
| R(int)                                      | 0.1479                 |
| Completeness to $\theta$                    | 95.6 %                 |
| Data / param.                               | 2194 / 121             |
| GOF                                         | 1.082                  |
| R1 [F>4 $\sigma$ (F)]                       | 0.0863                 |
| wR2 (all data)                              | 0.2874                 |
| max. peak/hole (e.Å-3)                      | 0.733/ -0.432          |

**Table S2:** Selected bond-lengths and angles for TAQP.3H<sub>2</sub>O

| Compound | Bond l      | ength    | Bond angle            |                          |  |
|----------|-------------|----------|-----------------------|--------------------------|--|
| TAQP     | P(1)-O(1)   | 1.504(5) | O(1)-P(1)-N(1)#1      | 112.56(12)               |  |
|          | P(1)-N(1)#1 | 1.658(4) | O(1)-P(1)-N(1)#2      | 112.56(12)               |  |
|          | P(1)-N(1)#2 | 1.658(4) | N(1)#1-P(1)-N(1)#2    | 106.22(14)               |  |
|          | P(1)-N(1)   | 1.658(4) | O(1)-P(1)-N(1) 112.56 | (1)-P(1)-N(1) 112.56(12) |  |
|          |             |          | N(1)#1-P(1)-N(1)      | 106.22(14)               |  |
|          |             |          | N(1)#2-P(1)-N(1)      | 106.22(14)               |  |
|          |             |          |                       |                          |  |

**Table S3:** H-bonding table for  $TAQP.3H_2O$ 

| Compound | D-HA                                              | d(HA)Å  | d(DA)Å   | <(DHA)° |  |
|----------|---------------------------------------------------|---------|----------|---------|--|
| TAQP     | N(1)-H(1)O(1S)#3                                  | 0.88    | 2.876(5) | 154.5   |  |
|          | O(1S)-H(1S)N(13)#40.88(4)                         |         | 2.938(5) | 177(6)  |  |
|          | O(1S)-H(2S)O(1)                                   | 0.88(4) | 2.887(5) | 167(6)  |  |
|          | #1 -y+1,x-y,z #2 -x+y+1,-x+1,z #3 -x+y+1,-x+1,z-1 |         |          |         |  |
|          | #4 y,-x+y,-z+1                                    |         |          |         |  |

Scheme S1:



Fig. S1: <sup>31</sup>P-NMR of TAQP in DMSO-d<sub>6</sub>

~9.00 ~8.98 \_\_\_\_\_8.87













Fig. S5: Excitation and emission Spectra of TAQP in DMF: excitation spectra (black), emission at  $1x10^{-3}M$  concentration (blue) and emission at higher concentration  $1x10^{-3}M$  (red).



Fig. S6: Excitation and emission Spectra of TAQP in MeOH: excitation spectra (black), emission at  $1 \times 10^{-5}$ M concentration (blue) and emission at higher concentration  $1 \times 10^{-3}$ M (red).



**Fig. S7**: Emission Spectra of TAQP in various solvents at 1x10<sup>-5</sup>M concentration: DMF (green), DMF/H<sub>2</sub>O (pink), MeOH (blue) and MeOH/H<sub>2</sub>O (red).



**Fig. S8:** Emission spectra of TAQP in DMF at different concentration: 1x10<sup>-3</sup>M (red), 1x10<sup>-4</sup>M (green), 1x10<sup>-5</sup>M (blue).



Fig. S9: FESEM images of  $1 \times 10^{-5}$ M solution of TAQP in DMF (a), DMF/H<sub>2</sub>O (b), MeOH (c) and MeOH/H<sub>2</sub>O (d).



Fig. S10: Fluorescence Lifetime spectra of various samples of TAQP.



Fig. S11: Emission spectra of TAQP ( $1x10^{-5}M$ ) before (blue) and after (red) the addition of 5 eq PA ( $1x10^{-3}M$ ) in DMF.



Fig. S12: Emission spectra of TAQP ( $1x10^{-5}M$ ) before (blue) and after (red) the addition of 5 eq PA ( $1x10^{-3}M$ ) in MeOH.



Fig. S13: Absorbance spectra of TAQP  $(1x10^{-5}M)$  in DMF with PA  $(1x10^{-3}M)$ 



Fig. S14: Absorbance spectra of TAQP (1x10<sup>-5</sup>M) in MeOH with PA (1x10<sup>-3</sup>M)



Fig. S15: Emission spectra of TAQP ( $1x10^{-5}M$ ) before (purple) and after (red) the addition of TFA ( $1x10^{-3}M$ ) in MeOH.



**Fig. S16**:  ${}^{31}$ P-NMR of TAQP + 5 eq PA in DMSO-d<sub>6</sub>.



**Fig. S17**: <sup>31</sup>P-NMR of TAQP + 10 eq TFA in DMSO-d<sub>6</sub>



**Fig. S18**: Emission spectra of TAQP ( $1x10^{-5}M$ ) before (purple) and after (red) the addition of 10 eq PA ( $1x10^{-3}M$ ) in DMF:H<sub>2</sub>O (6:4).



**Fig. S19**: Emission spectra of TAQP (1x10<sup>-5</sup>M) before (purple) and after (red) the addition of 10 eq PA (1x10<sup>-3</sup>M) in MeOH:H<sub>2</sub>O (6:4).



Fig. S20: Relative changes of fluorescent intensity  $(I_{458}/I_{410})$  of TAQP  $(1x10^{-5}M)$  for PA in MeOH/H<sub>2</sub>O or DMF/H<sub>2</sub>O.



Fig. S21: Emission spectral titration of TAQP  $(1x10^{-5}M)$  with PA  $(1x10^{-3}M)$  in H<sub>2</sub>O.



**Fig. S22**: Plot of luminescence ratios of TAQP (1x10<sup>-5</sup>M) vs the concentration of PA in (a) DMF/H<sub>2</sub>O mixture and (b) neat H<sub>2</sub>O suspension. The slope of the fitted line is used for calculating the PA detection limit of TAQP.



Fig. S23: Emission spectral titration of TAQP ( $1x10^{-3}M$ ) with 20 equivalent of PA ( $1x10^{-3}M$ ) in DMF.



Fig. S24: Luminescence quenching plot of TAQP (1x10<sup>-3</sup>M) with 20 equivalent of PA (1x10<sup>-3</sup>M) in DMF



Fig. S25: Emission spectral titration of TAQP ( $1x10^{-5}M$ ) with 5 equivalent of NB ( $1x10^{-3}M$ ) in DMF



Fig. S26: Emission spectral titration of TAQP ( $1x10^{-5}M$ ) with 5 equivalent of DNB ( $1x10^{-3}M$ ) in DMF



Fig. S27: Emission spectral titration of TAQP ( $1x10^{-5}M$ ) with 5 equivalent of NT ( $1x10^{-3}M$ ) in DMF.



**Fig. S28**: Emission spectral titration of TAQP (10<sup>-5</sup> M) with 5 equivalent of DNT (10<sup>-3</sup> M) in DMF.



Fig. S29: Emission spectral titration of TAQP ( $1x10^{-5}M$ ) with 5 equivalent of TNT ( $1x10^{-3}M$ ) in DMF.







Fig. S31: Emission spectral titration of TAQP ( $1x10^{-5}M$ ) with 5 equivalent of NP ( $1x10^{-3}M$ ) in DMF.



Fig. S32: Emission spectral titration of TAQP ( $1x10^{-5}M$ ) with 5 equivalent of PA ( $1x10^{-3}M$ ) in DMF.



Fig. S33: Emission spectral titration of TAQP  $(1x10^{-5}M)$  with 5 equivalent of PA  $(1x10^{-3}M)$  in MeOH.



Fig. S34: Emission spectral titration of TAQP  $(1x10^{-5}M)$  of PA  $(1x10^{-3}M)$  in the presence of other interfering aromatic analytes  $(1x10^{-3}M)$  in DMF in incremental addition of 50µL each. These observations suggest that the formation of the peak at 465 nm is observed only in case of PA.