Supporting information for manuscript

Improved propane photooxidation activities upon nano Cu₂O/TiO₂

heterojunction semiconductors at room temperature

Dan Wang,^{a,b} Xiaoyang Pan,^a Guangtao Wang,^b and Zhiguo Yi*a

^aKey Laboratory of Design and Assembly of Functional Nanostructures & Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^bCollege of Physics and Information Engineering, Henan Normal University, Xinxiang, Henan 453007, China

*Corresponding author: Prof. Zhiguo Yi; E-mail Address: zhiguo@fjirsm.ac.cn; Tel. +86 591 83806523; Fax: +86-591-83714946

Fig. S1. The spectrum of the Xe lamp.

Fig. S2. Apparent rate constant k of propane photodegradation upon P25 and the Cu_2O -TiO₂ (CT) nanocomposites under simulated solar light irradiation.

Fig. S3. (a) Time course of C_2H_4 photodegradation upon the as-synthesized photocatalysts; (b) Kinetics plots of C_2H_4 degradation in (a); (c) photocatalytic C_2H_4 degradation and CO₂ generation over the 0.1CT in a flow mode; (d) Recycle test of photocatalytic activity of 0.1CT toward C_2H_4 degradation under simulated solar light irradiation.

Fig. S4. Apparent rate constant k of ethylene photodegradation upon P25 and the Cu_2O -TiO₂ (CT) nanocomposites under simulated solar light irradiation.

Fig. S5. XRD patterns of 0.1CT before and after the HC photodegradation tests.

Fig. S6. XPS spectra of the 0.1CT sample before and after the photocatalytic tests: (a) Ti 2p; (b) O 1s.

Fig. S7. Photograph of the Cu_2O before and after the gas phase HC photoreactions under simulated solar light irradiation.