Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting information

Fig. S1 DSC curves of n-octadecane and PCM-1: (a) melting process and (b) solidifying process

Fig. S2 DSC curves of ethyl palmitate and PCM-2: (a) melting process and (b) solidifying process

Fig. S3 DSC curves of 1-octadecanol and PCM-3; (a) melting process and (b) solidifying process

Fig. S4 DSC curves of 1-octadecanol and PCM-3; (a) melting process and (b) solidifying process

Fig. S5 Frequency dependence of the dynamic storage moduli G' and loss moduli G' of different composite PCMs: (a) PCM-1; (b) PCM-2; (c) PCM-3; (d) PCM-4.

Fig. S6 FTIR spectra of (a) ethyl palmitate, (b) PCM-2

Fig. S7 FTIR spectra of (a) 1-octadecanol, (b) PCM-3

Fig. S8 FTIR spectra of (a) 1-tetradecanol, (b) PCM-4

Fig. S9 Endothermic (a) and Exothermic (b) curves of n-octadecane and PCM-1

Fig. S10 Endothermic (a) and Exothermic (b) curves of ethyl palmitate and PCM-2

Fig. S11 Endothermic (a) and Exothermic (b) curves of 1-octadecanol and PCM-3

Fig. S12 Endothermic (a) and Exothermic (b) curves of 1-tetradecanol and PCM-4

Fedors Method							
Groups	-CH ₃	-CH ₂	-CH<	-0-	-OH-a	Phenyl (trisubstituted)	Ring closure5 or more atoms
Occurrences, N _i	4	2	6	4	2	2	2
E _i (J/mol)	4710	4940	3430	3350	29800	31940	1050
V _i (cm ³ /mol)	33.5	16.1	-1.0	3.8	10.0	33.4	16
Sum	$E_{coh} = \sum E_i N_i = 188280$ $V = \sum V_i N_i = 294.2$						
$\delta(J^{1/2}/cm^{3/2})$	$\delta = (E_{coh}/V)^{1/2} = 25.3$						

Table S1 Summary of group additivity values of DMDBS.

Table S2 Summary of group additivity values of n-octadecane.

Fedors Method				
Groups	-CH ₃	-CH ₂ -		
Occurrences, Ni	2	16		
Ei(J/mol)	4710	4940		
Vi(cm ³ /mol)	33.5	16.1		
Sum	$E_{coh}=\sum E_i N_i = 88460$			
Sum	$V = \sum V_i N_i = 324.6$			
$\delta(J^{1/2}/cm^{3/2})$	$\delta = (E_{coh}/V)^{1/2} = 16.5$			

Table S3 Summary of group additivity values of ethyl palmitate.

Fedors Method				
Groups	-CH ₃	-CH2-	-CO ₂ -	
Occurrences, Ni	2	15	1	
Ei(J/mol)	4710	4940	18000	
Vi(cm ³ /mol)	33.5	16.1	18.0	
Sum		$E_{coh} = \sum E_i N_i = 101520$		
	$V = \sum V_i N_i = 326.5$			
$\delta(J^{1/2}/cm^{3/2})$	$\delta = (E_{coh}/V)^{1/2} = 17.6$			

Fedors Method				
Groups	-CH ₃	-CH2-	-OH	
Occurrences, Ni	1	17	1	
Ei(J/mol)	4710	4940	29800	
Vi(cm ³ /mol)	33.5	16.1	10.0	
Sum	$E_{coh} = \sum E_i N_i = 118490$			
	$V = \sum V_i N_i = 317.2$			
$\delta(J^{1/2}/cm^{3/2})$	$\delta = (E_{coh}/V)^{1/2} = 19.4$			

Table S4 Summary of group additivity values of 1-octadecanol.

Table S5 Summary of group additivity values of 1-tetradecanol

Fedors Method				
Groups	-CH ₃	-CH2-	-OH	
Occurrences, Ni	1	13	1	
Ei(J/mol)	4710	4940	29800	
Vi(cm ³ /mol)	33.5	16.1	10.0	
S		$E_{coh} = \sum E_i N_i = 98730$		
Sum		$V = \sum V_i N_i = 252.8$		
$\delta(J^{1/2}/cm^{3/2})$	$\delta = (E_{coh}/V)^{1/2} = 19.8$			