

Potentially	Tolerable Concentration	R^{a} (%) ± S^{b}				
interfering ions	Ratio X ^c / Cd, Zn, Pb, Cr	Cadmium	Zinc	Lead	Chromium	
K^+	10000	98.0 ± 3.5	100 ± 3.0	99.4 ± 2.0	101 ± 3.3	
Na^+	10000	99.2 ± 3.5	99.1 ± 4.8	99.2 ± 2.4	98.9 ± 3.6	
Ca ²⁺	1000	97.0 ± 1.6	98.2 ± 3.8	97.0 ± 2.8	98.2 ± 4.4	
Al^{3+}	1000	99.0 ± 4.1	98.5 ± 2.8	98.5 ± 4.0	97.4 ± 3.2	
Ni ²⁺	500	96.0 ± 2.6	95.4 ± 3.0	96.3 ± 2.2	96.9 ± 3.0	
Fe ³⁺	400	97.5 ± 3.4	98.1 ± 2.5	97.6 ± 2.5	96.1 ± 3.1	
Sn^{2+}	1000	96.0 ± 2.9	97.0 ± 3.3	96.4 ± 2.0	96.0 ± 4.4	
Mg^{2+}	1000	99.5 ± 3.3	98.6 ± 2.7	98.4 ± 2.9	97.6 ± 2.7	
Mn^{2+}	500	98.5 ± 1.9	97.4 ± 2.4	97.1 ± 2.6	96.1 ± 3.0	
Ag^+	500	96.2 ± 3.4	96.7 ± 4.0	96.8 ± 3.6	95.8 ± 2.9	
Hg^{2+}	250	95.6 ± 3.5	96.8 ± 3.5	95.7 ± 3.8	96.4 ± 3.3	
Cu^{2+}	100	96.4 ± 3.2	94.8 ± 3.3	95.5 ± 3.6	96.3 ± 2.4	
Co ²⁺	50	95.1 ± 2.6	94.5 ± 3.1	96.4 ± 2.8	96.0 ± 3.6	
AsO43-	1000	97.0 ± 3.0	98.0 ± 4.6	95.0 ± 3.4	98.0 ± 2.7	

Table 18	
The tolerance limit of various ions on the determination of heavy	y metal.

^a Recovery

^b standard deviation (n = 3)

Conditions: sample pH = 6.1, sample volume = 250 mL, 0.02 mg of Cd(II), Pb(II), Zn(II) and Cr(III) ions uptake time = 15 min; eluent = 4.2 mL, 0.7 mol L⁻¹ EDTA in 0.06 mol L⁻¹ HNO₃ solution, elution time = 17 min.

^c Concentration of potentially interfering ions.

Table 2S

Method	Instrument	LOD (ng mL ⁻¹)	Sorption capacity (mg g ⁻¹)	PF ^a	RSD (%)	Ref.
(Fe ₃ O ₄ -ethylenediamine)/MIL-101(Fe) magnetic metal-organic framework nanocomposite	FAAS	0.15-0.8	155-198	238	< 7.6	This work
Multiwalled carbon nanotubes/ cresolphthalein Complexone	FAAS	1.64-5.68	-	40	-	[1]
Multiwalled carbon nanotubes/ APDC ^b	FAAS	0.30-0.60	7.3-14.2	80	< 5	[2]
Magnetic multiwalled carbon nanotube composite	FAAS	0.09-1.0	150-201	181	< 5.1	[3]
Decanoic acid-coated Fe ₃ O ₄ nanoparticles	ICP-OES	0.3-0.8	-	118-136	< 8.2	[4]
Gallic acid modified silica gel	FAAS	0.58-0.65	6.09-12.63	100-200	< 4.7	[5]
XAD-2 functionalized with o-aminophenol	FAAS	2.0-25	3.32-3.42	40-50	< 5.1	[6]
Thioacetamide modified silica gel	FAAS	0.51-0.96	12.5-19.76	200-300	< 5.3	[7]

Comparison of magnetic metal-organic framework nanocomposite with those of the other sorbents.

^a Preconcentration factor.

^b Ammonium pyrrolidine dithiocarbamate.

References:

[1] A. Duran, M. Tuzen, M. Soylak, J. Hazard. Mater., 2009, 169, 466-471.

[2] M. Tuzen, K.O. Saygi, M. Soylak, J. Hazard. Mater., 2008, 156, 591-595.

[3] M. Taghizadeh, A.A. Asgharinezhad, N. Samkhaniany, A. Tadjarodi, A. Abbaszadeh, M. Pooladi, *Microchim Acta*, 2014, **181**, 597-605.

[4] M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M. Ghambarian, R. Hassani, Anal. Chim. Acta, 2010, 659, 172-177.

- [5] F. Xie, X. Lin, X. Wu, Z. Xie, Talanta, 2008, 74, 836-843.
- [6] M. Kumar, D.P.S. Rathore, A.K. Singh, *Talanta*, 2000, **51**, 1187-1196.

[7] Z.H. Xie, F.Z. Xie, L.Q. Guo, X.C. Lin, G.N. Chen, J. Sep. Sci., 2005, 28, 462-470.