Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

Two novel Anderson-type polyoxometalate-based metal-organic

complexes with high-efficiency photocatalysis towards degradation

of organic dyes under UV and visible light irradiation

Xiuli Wang,*^a Zhihan Chang, Hongyan Lin*, Aixiang Tian, Guocheng Liu, Juwen Zhang, Danna

Liu

Complex 1			
Cu(1)–N(1)	1.999(13)	Cu(1)-O(1)	1.902(12)
Cu(1)-O(2)#1	1.952(11)	Cu(1)–O(1W)	1.891(11)
O(1)–Cu(1)–N(1)	90.6(5)	O(1)-Cu(1)-O(2)#1	90.6(5)
O(2)#1-Cu(1)-N(1)	150.5(5)	O(1W)–Cu(1)–O(1)	165.4(6)
O(1W)-Cu(1)-N(1)	90.2(5)	O(1W)–Cu(1)–O(2)#1	95.8(5)
Symmetry code: #1 x+1, y, z			
Complex 2			
Cu(1)–N(1)	2.020(3)	Cu(1)–O(1)	2.153(2)
Cu(1)–N(1)#1	2.020(3)	Cu(1)-O(1W)#1	2.187(3)
Cu(1)-O(1)#1	2.153(2)	Cu(1)–O(1W)	2.187(3)
Cu(2)–O(3)#2	1.935(2)	Cu(2)–O(2) #3	2.498(3)
Cu(2)–O(3)#3	1.935(2)	Cu(2)–O(2) #2	2.498(3)
Cu(2)–N(3)	1.990(3)	Cu(2)–N(3)#4	1.990(3)
N(1)-Cu(1)-N(1)#1	170.91(16)	N(1)-Cu(1)-O(1W)#1	88.40(11)
N(1)-Cu(1)-O(1)#1	93.52(10)	N(1)#2-Cu(1)-O(1W)#1	85.88(11)
N(1)#1-Cu(1)-O(1)#1	93.27(10)	O(1)#1-Cu(1)-O(1W)#1	87.35(10)
N(1)-Cu(1)-O(1)	93.27(10)	O(1)-Cu(1)-O(1W)#1	170.65(11)
N(1)#1-Cu(1)-O(1)	93.52(10)	N(1)-Cu(1)-O(1W)	85.88(11)
O(1)#1-Cu(1)-O(1)	83.37(13)	N(1)#1-Cu(1)-O(1W)	88.40(11)
O(1)–Cu(1)–O(1W)	87.35(10)	O(1)#1-Cu(1)-O(1W)	170.65(11)
O(1W)#1-Cu(1)-O(1W)	101.94(17)	O(3)#2-Cu(2)-N(3)#4	87.50(11)
O(3)#2-Cu(2)-O(3)#3	92.95(14)	O(3)#4-Cu(2)-N(3)#4	178.92(11)
O(3)#2-Cu(2)-N(3)	178.92(11)	N(3)-Cu(2)-N(3)#4	92.06(17)
O(3)#3-Cu(2)-N(3)	87.50(11)	O(2)#3-Cu(2)-O(2)#2	164.94(11)
O(2)#2-Cu(2)-N(3)#4	98.82(14)	O(2)#2-Cu(2)-N(3)	91.64(13)
O(2)#2-Cu(2)-O(3)#3	82.19(12)	O(2)#2-Cu(2)-O(3)#2	87.45(12)
O(2)#3-Cu(2)-N(3)	98.82(13)	O(2)#3-Cu(2)-N(3)#4	91.64(14)
O(2)#3-Cu(2)-O(3)#3	87.45(11)	O(2)#3-Cu(2)-O(3)#2	82.19(13)
Symmetry code: #1 -x,y,-z+1/2; #2 -x+1/2,y-1/2,-z+3/2; #3 x+1/2, y-1/2, z; #4 -x+1,y,-z+3/2			

Table S1. Selected bond distances (Å) and angles (°) for the title complexes.

Complex 1			
Atom	calculated valence		
Mo1	6.2310		
Mo2	6.1299		
Mo3	6.0028		
Mo4	6.0779		
Mo5	6.2118		
Mo6	5.9174		
Complex 2			
Atom	calculated valence		
Mol	5.9398		
Mo2	6.0334		
Mo3	5.9669		

Table S2 the BVC results of the Mo centers in the title complexes

Fig. S1. The 2D supramolecular network of 1.

Fig. S2. Two different coordination modes of CrMo₆ anions in the 2D network of 2.

Fig. S3. The 3D framework of 2.

Fig. S4. The IR spectra of the title complexes.

Fig. S5. The TGA curves of complexes 1 and 2.

Fig. S6. Powder X-ray diffraction patterns of the title complexes before and after the photocatalytic reactions.

Fig. S7 The photographs of MB and Rhb solution before and after photodecomposition.