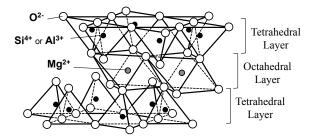
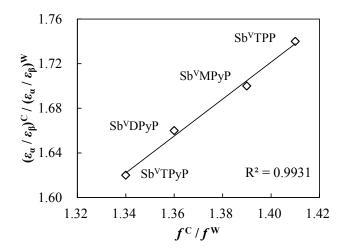
Structure resembling effect of clay surface on photochemical properties of *meso*-phenyl or pyridyl-substituted monocationic antimony(V) porphyrin derivatives

Takamasa Tsukamoto ^{a, b}, Tetsuya Shimada ^a and Shinsuke Takagi ^{a *}


^a Department of Applied Chemistry, Graduate Course of Urban Environmental Sciences, Tokyo
Metropolitan University, Minami-ohsawa 1-1, Hachiohji, Tokyo 192-0397 Japan

^b Japan Society for the Promotion of Science (JSPS / DC2), Ichibancho, Chiyoda-ku, Tokyo 102-8471 Japan


Tel.: +81 42 677 2839; fax: +81 42 677 2838

Corresponding author E-mail address: takagi-shinsuke@tmu.ac.jp (Shinsuke Takagi)

Electronic Supplementary Information

Figure S1. The structure of synthetic saponite, $[(Si_{7.2}Al_{0.8})(Mg_{5.97}Al_{0.03})O_{20}(OH)_4]^{-0.77}$.

Figure S2. The plot of $(\varepsilon_{\alpha}/\varepsilon_{\beta})^{C}/(\varepsilon_{\alpha}/\varepsilon_{\beta})^{W}$ values against f^{C}/f^{W} values for Sb^VPors.

Synthesis of Sb^VPor

SbCl₅, 5,10,15,20-tetraphenylporphine (TPP) and 5,10,15,20-tetrakis(4-pyridyl)porphine (TPyP) were purchased from Aldrich, and used without further purification. 5,10,15-triphenyl-20-mono(4-pyridyl)porphine (MPyP) and 5,15-diphenyl-10,20-di(4-pyridyl)porphine (DPyP) was purchased from Frontier Scientific, and used without further purification. All syntheses were carried out under nitrogen atmosphere. ¹H-NMR spectra in D₂O were recorded on a Bruker B-500.

Synthesis of [Sb^V(TPP)(OH)₂]Cl

Dihydroxo(5,10,15,20-tetraphenylporphyrinato)antimony(V) chloride ($[Sb^V(TPP)(OH)_2]Cl$) was synthesized according to established routes²⁹.

Synthesis of [Sb^V(MPyP)(OH)₂]Cl

Dihydroxo[5,10,15-triphenyl-20-mono(4-pyridyl)porphyrinato]antimony(V) chloride ([Sb^V(MPyP)(OH)₂]Cl) was synthesized as below. SbCl₅ (1 mL) was added to a solution of MPyP (40.0 mg) in pyridine (30 mL). The reaction mixture was refluxed for 50 hours. H₂O (2 mL) was added to the solution. The solvent was evaporated and the residue was solved in CHCl₃ (100 mL). The CHCl₃ solution was washed three times with 200 mL portions of H₂O and red violet CHCl₃ solution was extracted. After the KCl aqueous solution (1 M, 100 mL) was added to the CHCl₃ solution, the solution was stirred for 21 hours and the CHCl₃ phase was extracted tow times and . The CHCl₃ solution was washed two times with 200 mL portions of H₂O and red

violet CHCl₃ solution was extracted. The counter ion (antimony complex anion) was exchanged to Cl⁻ by the use of ion-exchange resin (Organo, Amberlite Resin IRA-400) to give dihydroxo[5,15-diphenyl-10,20-di(4-pyridyl)porphyrinato]antimony(V) chloride ([Sb^V(DPyP)(OH)₂]Cl) in ca. 11% yield. ¹H-NMR (D₂O /ppm) δ 7.99 (6H, t, *m*-Ph), 8.04 (3H, t, *p*-Ph), 8.44 (6H, d, *o*-Ph), 8.50 (2H, d, *m*-Py), 9.13 (2H, d, *o*-Py), 9.68 (2H, d, β -Pyrr), 9.74 (4H, s, β -Pyrr), 9.76 (2H, s, β -Pyrr).

Synthesis of [Sb^V(DPyP)(OH)₂]Cl

Dihydroxo[5,15-diphenyl-10,20-di(4-pyridyl)porphyrinato]antimony(V) chloride [Sb^V(DPyP)(OH)₂]Cl) was synthesized as below. SbCl₅ (1 mL) was added to a solution of DPyP (30.0 mg) in pyridine (30 mL). The reaction mixture was refluxed for 18 hours. H₂O (2 mL) was added to the solution. The solvent was evaporated and the residue was solved in CHCl₃ (100 mL). The CHCl₃ solution was washed two times with 200 mL portions of H₂O and red violet CHCl₃ solution was extracted. After the KCl aqueous solution (1 M, 100 mL) was added to the CHCl₃ solution, the solution was stirred for 24 hours and the CHCl₃ phase was extracted tow times and . The CHCl₃ solution was washed two times with 100 mL portions of H₂O and red violet CHCl₃ solution was extracted and the solvent. The counter ion (antimony complex anion) was exchanged to Cl by the use of ion-exchange resin (Organo, Amberlite Resin IRA-400) to give dihydroxo[5,15-diphenyl-10,20-di(4-pyridyl)porphyrinato]antimony(V) chloride $[Sb^{V}(DPyP)(OH)_{2}]C1$) in ca. 13% yield. ¹H-NMR $(D_{2}O/ppm)$ δ 8.00 (4H, t, m-Ph), 8.06 (2H, t, p-Ph), 8.46 (4H, d, o-Ph), 8.52 (4H, d, m-Py), 9.14 (4H, d, o-Py), 9.71 (4H, d, β -Pyrr), 9.79 (4H, d, β -Pyrr).

Synthesis of $[Sb^{V}(TPyP)(OH)_{2}]Cl$

 $Dihydroxo[5,10,15,20-tetrakis(4-pyridyl)porphyrinato] antimony(V) \qquad \qquad chloride \qquad (\\ [Sb^V(TPyP)(OH)_2]Cl\) \ was \ synthesized \ according \ to \ established \ routes^{29}.$