
Electronic Supplementary Information (ESI) for

Metal-organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation of water splitting

Tian Tian, Lunhong Ai,* and Jing Jiang,*

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1, Nanchong 637002, P.R. China.

E-mail: ah aihong@163.com (L. Ai); 0826zjjh@163.com (J. Jiang); Tel/Fax: +86-817-2568081

Chem. Commun., 2014, 50, 9485-9488

Fig. S1 XRD pattern of Ni-BTC MOF.



Fig. S2 FTIR spectra of Ni-BTC MOF

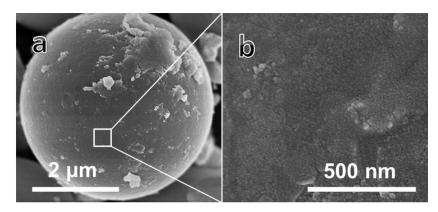


Fig. S3 SEM images of Ni-BTC MOF

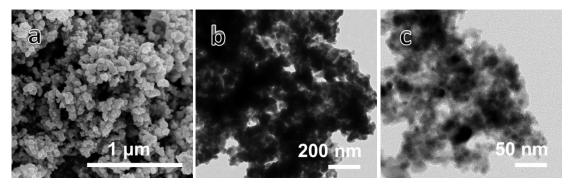


Fig. S4 SEM (a) and TEM images (b,c) of Ni_2P nanoparticles

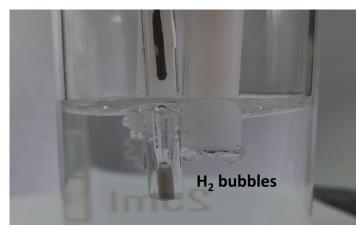


Fig. S5 Optical image of the generated H₂ bubbles on Ni₂P nanoparticles modified GCE

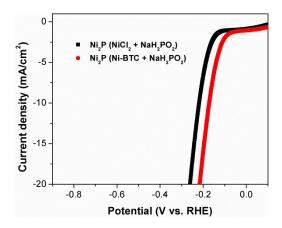
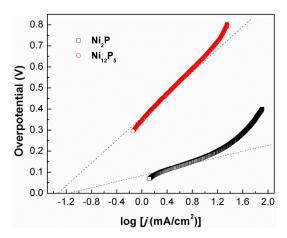
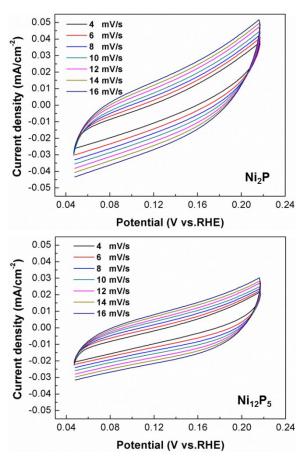




Fig. S6 Polarization curves of the Ni_2P synthesized from different Ni-based precursor with a scan rate of 5 mV s⁻¹ in 0.5 M H_2SO_4 solution

 $\label{eq:Fig.S7} \textbf{Fig. S7} \ \text{Calculated exchange current densities of the Ni}_2P \ \text{and Ni}_{12}P_5 \ \text{nanoparticles by applying}$ extrapolation method to the Tafel plots

 $\label{eq:Fig.S8} \textbf{Fig. S8} \ \text{Cyclic voltammograms (CVs) of Ni}_2P \ \text{and Ni}_{12}P_5 \ \text{nanoparticles measured at different scan} \\ \text{rates from 4 to 16 mV s}^{-1}.$

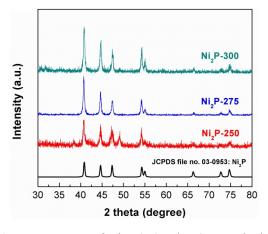
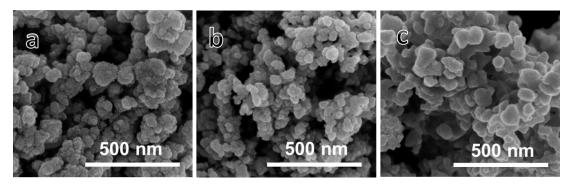



Fig. S9 XRD patterns of Ni₂P-250, Ni₂P-275, and Ni₂P-300

Fig. S10 SEM images of Ni₂P-250 (a), Ni₂P-275 (b), Ni₂P-300 (c)

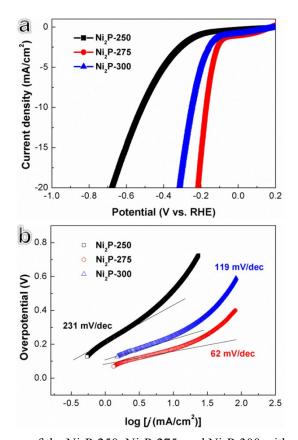


Fig. S11 Polarization curves of the Ni_2P -250, Ni_2P -275, and Ni_2P -300 with a scan rate of 5 mV s⁻¹ in 0.5 M H_2SO_4 . (b) Tafel plots of the Ni_2P -250, Ni_2P -275, and Ni_2P -300.