Supporting Information

Highly Monodisperse Cu₃Mo₂O₉ Micropompons with Excellent Performance in Photocatalysis, Photocurrent Response and Lithium Storage

Juan Xia,^{*a*} Le Xin Song,^{*a,b*} Wei Liu,^{*a*} Yue Teng, ^{*a*} Qing Shan Wang^{*b*}, Li Zhao^{*b*} and Mao Mao Ruan^{*b*}

^a CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jin Zhai Road 96, Hefei 230026, China
^b Department of Chemistry, University of Science and Technology of China, Jin Zhai Road 96, Hefei 230026, China.

E-mail: solexin@ustc.edu.cn; wliu@ustc.edu.cn

A list of the contents for all the supporting information

Pages	Contents
1	A table of contents page
2	Figure S1. The XRD patterns of NiMoO ₄ xH_2O (a), Cu ₃ (OH) ₂ (MoO ₄) ₂ (b) and
	$Zn_{3}(OH)_{2}(MoO_{4})_{2}$ (c).
3	Figure S2. FE-SEM image of NiMoO ₄ xH_2O .
4	Figure S3. FE-SEM images of $Cu_3(OH)_2(MoO_4)_2$ (a) and $Zn_3(OH)_2(MoO_4)_2$ (b).
5	Figure S4. XRD pattern of $ZnMoO_4$ 0.8H ₂ O.
6	Figure S5. XRD patterns of NiMoO ₄ xH ₂ O (a) and Cu ₃ (OH) ₂ (MoO ₄) ₂ (c) obtained at 383 K
	for heating time of 10 h with a 2:1 initial molar ratio of Mo to Ni and Mo to Cu; $\alpha\text{-NiMoO}_4$
	(b) and $Cu_3Mo_2O_9$ (d) were their sintering products at 873 K for 3 h.
7	Figure S6. FE-SEM image of $ZnMoO_4$ 0.8H ₂ O.
8	Figure S7. The evolution of the precursor $Cu_3(OH)_2(MoO_4)_2$ performed at 383 K for
	heating times of 0.5, 1, 3, 5 and 10 h.
9	Figure S8. XRD pattern of the (NH ₄) ₂ Cu(MoO ₄) ₂ obtained by changing water to anhydrous
	ethanol at 383 K for heating time of 10 h.
	Figure S9.FE-SEM image of the (NH ₄) ₂ Cu(MoO ₄) ₂ obtained by changing water to
	anhydrous ethanol at 383 K for heating time of 10 h.
10	Figure S10. XRD patterns of the Cu ₃ (OH) ₂ (MoO ₄) ₂ materials obtained at 383 K for heating
	time of 0.5 h in the presence of HCl (a), HAc (b) and H_4Y (c).
11	Figure S11. FE-SEM images of the $Cu_3(OH)_2(MoO_4)_2$ materials obtained at 383 K for
	heating time of 10 h in the presence of HCl (a) and HAc (b).
12	Figure S12. XRD patterns of the $Cu_3(OH)_2(MoO_4)_2$ microurchins (a) and $Cu_3Mo_2O_9$
	micropompons (b).
13	Figure S13. XRD patterns of the spherical $Cu_3(OH)_2(MoO_4)_2$ material prepared at 383 K
	for 10 h in the presence of 0.10 (a) and 0.30 g (b) H_4Y .
	Figure S14. FE-SEM images of the spherical $Cu_3(OH)_2(MoO_4)_2$ material prepared at 383 K
	for 10 h in the presence of 0.10 (a) and 0.30 g (b) H_4Y .
14	Figure S15. FE-SEM images of the $(NH_4)_2Cu(MoO_4)_2$ materials obtained at 383 K for
1.5	heating time of 0.5 h in the absence (a) and presence (b) of Na_2H_2Y .
15	Figure S16. IG curve of the $Cu_3(OH)_2(MoO_4)_2$ microurchins in air at a heating rate of 10.0
16	K min .
16	Figure S17. FTIR spectrum of the $Cu_3Mo_2O_9$ micropompons.
17	Figure S18. ARD patterns of the $Cu_3Wo_2O_9$ materials obtained by sintering the $Cu_4(OII)$ (MaQ), microsurching at 772 (a) and 072 K (b) for 2 h under sin condition
	$Cu_3(OH)_2(MOO_4)_2$ interouremins at 7/3 (a) and 9/3 K (b) for 5 n under air condition.
	Figure S19. FE-SEM images of the $Cu_3 Wlo_2 O_9$ inatentials obtained by sintering the $Cu_4 (OH) (MeQ_4)$ microwrobing at 773 (a) and 073 K (b) for 2 h under air condition
18	Figure S20 Field dependence of magnetization of the Cu (OH) (MoO) microurchine at 2
10	Figure 520. Field dependence of magnetization of the $Cu_3(OT)_2(WOO_4)_2$ interoductions at 2 K in the applied fields: from -50000 to 50000 Oe (a) temperature dependence of
	magnetization of the $Cu_2(OH)_2(MoQ_2)_2$ microurching at 100 Oe from 2 to 300 K (b) a
	sketch man of linear extrapolation in achieving Curie temperature (T_c) from 2 to 40 K (c), a
	and an illustration of M/T differential coefficient method (d) in obtaining Curie temperature
	from 2 to 40 K
19	Figure S21. N_2 adsorption-desorption isotherm and nore size distribution (inset) of the
17	$C_{\rm H_2}Mo_2O_0$ micropompons.
20	Figure S22. UV–Vis absorption spectra of the R6G solutions before and after being treated
	by the $Cu_3Mo_2O_9$ micropompons for 150 min.

Figure S1. The XRD patterns of NiMoO₄ xH₂O (a), Cu₃(OH)₂(MoO₄)₂ (b) and Zn₃(OH)₂(MoO₄)₂ (c).

Figure S2. FE-SEM image of NiMoO₄ *x*H₂O.

Figure S3. FE-SEM images of $Cu_3(OH)_2(MoO_4)_2$ (a) and $Zn_3(OH)_2(MoO_4)_2$ (b).

Figure S5. XRD patterns of NiMoO₄ xH₂O (a) and Cu₃(OH)₂(MoO₄)₂ (c) obtained at 383 K for heating time of 10 h with a 2:1 initial molar ratio of Mo to Ni and Mo to Cu; α -NiMoO₄ (b) and Cu₃Mo₂O₉ (d) were their sintering products at 873 K for 3 h.

Figure S6. FE-SEM image of ZnMoO₄ 0.8H₂O.

Figure S7.The evolution of the precursor $Cu_3(OH)_2(MoO_4)_2$ performed at 383 K for heating times of 0.5, 1, 3, 5 and 10 h.

Figure S8. XRD pattern of the $(NH_4)_2Cu(MoO_4)_2$ obtained by changing water to anhydrous ethanol at 383 K for heating time of 10 h.

Figure S9. FE-SEM image of the $(NH_4)_2Cu(MoO_4)_2$ obtained by changing water to anhydrous ethanol at 383 K for heating time of 10 h.

Figure S10. XRD patterns of the $Cu_3(OH)_2(MoO_4)_2$ materials obtained at 383 K for heating time of 0.5 h in the presence of HCl (a), HAc (b) and H₄Y (c).

Figure S11. FE-SEM images of the $Cu_3(OH)_2(MoO_4)_2$ materials obtained at 383 K for heating time of 10 h in the presence of HCl (a) and HAc (b).

Figure S12. XRD patterns of the $Cu_3(OH)_2(MoO_4)_2$ microurchins (a) and $Cu_3Mo_2O_9$ micropompons (b).

Figure S13. XRD patterns of the spherical $Cu_3(OH)_2(MoO_4)_2$ material prepared at 383 K for 10 h in the presence of 0.10 (a) and 0.30 g (b) H₄Y.

Figure S14. FE-SEM images of the spherical $Cu_3(OH)_2(MoO_4)_2$ material prepared at 383 K for 10 h in the presence of 0.10 (a) and 0.30 g (b) H₄Y.

Figure S15. FE-SEM images of the $(NH_4)_2Cu(MoO_4)_2$ materials obtained at 383 K for heating time of 0.5 h in the absence (a) and presence (b) of Na_2H_2Y .

Figure S16. TG curve of the $Cu_3(OH)_2(MoO_4)_2$ microurchins in air at a heating rate of 10.0 K min⁻¹.

Figure S17. FTIR spectrum of the $Cu_3Mo_2O_9$ micropompons.

Figure S18. XRD patterns of the $Cu_3Mo_2O_9$ materials obtained by sintering the $Cu_3(OH)_2(MoO_4)_2$ microurchins at 773 (a) and 973 K (b) for 3 h under air condition.

Figure S19. FE-SEM images of the $Cu_3Mo_2O_9$ materials obtained by sintering the $Cu_3(OH)_2(MoO_4)_2$ microurchins at 773 (a) and 973 K (b) for 3 h under air condition.

Figure S20. Field dependence of magnetization of the $Cu_3(OH)_2(MoO_4)_2$ microurchins at 2 K in the applied fields: from -50000 to 50000 Oe (a), temperature dependence of magnetization of the $Cu_3(OH)_2(MoO_4)_2$ microurchins at 100 Oe from 2 to 300 K (b), a sketch map of linear extrapolation in achieving Curie temperature (T_C) from 2 to 40 K (c), and an illustration of M/T differential coefficient method (d) in obtaining T_C from 2 to 40 K.

Figure S21. N_2 adsorption-desorption isotherm and pore size distribution (inset) of the $Cu_3Mo_2O_9$ micropompons.

Figure S22. UV–Vis absorption spectra of the R6G solutions before and after being treated by the $Cu_3Mo_2O_9$ micropompons for 150 min.