Supporting materials

Formation of C(sp²)–S bond through decarboxylation of α-Oxocarboxylic Acids with Disulfides or Thiophenols

Guangwei Rong^a, Jincheng Mao, **a,bDefu Liu^a, Hong Yan^a, Yang Zheng^a, and Jie Chen^a*

 ^a Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
^b State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China *jcmao@suda.edu.cn*

Contents:

Experimental Section	S2
Characterization of the corresponding products	S3-10
Reference	S10
Copy of NMR Spectra for desired products	

Experimental Section

General information

All manipulations were carried out under air atmosphere. α -Ooxocarboxylic acids, disulfides and thiophenols were purchased from Acros Organics and used without further purification. Copper catalysts and oxidants were purchased from Adamas corporation. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H (400 MHz) and ¹³C NMR (100 MHz) data were recorded on Varian 400 M spectrometers using CDCl₃ as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. MS were performed by the State-authorized Analytical Center in Soochow University.

General procedure for copper-catalyzed decarboxylative coupling between α -oxocarboxylic acids with disulfides or thiophenols:

A mixture of α -oxocarboxylic acid (0.3 mmol), disulfide (0.3 mmol) or thiophenol (0.6 mmol), (NH₄)₂S₂O₈ (0.6 mmol), CuO (20 mol%), and DMSO/water (5/1) (2 mL) in a sealed tube was stirred in air at 80 °C for 12 h. At the end of the reaction, the reaction mixture was cooled to room temperature and was diluted with ethyl acetate (15 mL, three times) and water (20 mL) was added. The combined organic phase (45 mL) was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was subjected to column chromatography on silica gel using ethyl acetate and petroleum ether mixtures to afford the corresponding product.

Characterization of the corresponding products:

S-Phenyl benzothioate ^{1,2}

White solid, mp: $51 - 53^{\circ}$ C; IR (neat, cm⁻¹) 1667 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.95 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.47 – 7.37 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 190.2, 136.7, 135.1, 133.7, 129.6, 129.3, 128.8, 127.5, 127.4; MS (m/z) calcd for C₁₃H₁₀OS 215.1, found 215.1 (M+H)⁺.

S-Phenyl 4-methylbenzothioate³

White solid, mp: 78 – 80°C; IR (neat, cm⁻¹) 1668 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.92 (d, *J* = 8.0 Hz, 2H), 7.53-7.48 (m, 2H), 7.46 – 7.41 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 189.7, 144.6, 135.2, 134.1, 129.4, 129.2, 127.6, 21.7; MS (m/z) calcd for C₁₄H₁₂OS 229.1, found 229.1 (M+H)⁺.

S-Phenyl 3-methylbenzothioate⁴

White solid, mp: 95 – 97°C; IR (neat, cm⁻¹) 1665 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.85 – 7.80 (m, 2H), 7.53 – 7.48 (m, 2H), 7.47 – 7.42 (m, 3H), 7.42 – 7.33 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 190.3, 138.7, 136.7, 135.1, 134.5, 129.5, 129.3, 128.7, 128.0, 127.5, 124.7, 21.4; MS (m/z) calcd for C₁₄H₁₂OS 229.1, found 229.1 (M+H)⁺.

S-Phenyl 2-methylbenzothioate⁵

White solid, mp: 46 – 48°C; IR (neat, cm⁻¹) 1691 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.94 (d, *J* = 7.6 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.48 – 7.38 (m, 4H), 7.31 – 7.23 (m, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 191.7, 137.0, 136.3, 134.4, 131.6, 131.3, 129.0, 128.8, 128.2, 127.8, 125.4, 20.3; MS (m/z) calcd for C₁₄H₁₂OS 229.1, found 229.1 (M+H)⁺.

S-Phenyl 4-fluorobenzothioate²

White solid, mp: 60 – 62°C; IR (neat, cm⁻¹) 1676 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.08-8.02 (m, 2H), 7.53 – 7.48 (m, 2H), 7.47 – 7.43 (m, 3H), 7.15 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 188.7, 166.1 (d, *J* = 253.8 Hz), 135.1, 133.0 (d, *J* = 3.1 Hz), 130.1 (d, *J* = 9.3 Hz), 129.7, 129.3, 127.1, 115.9 (d, *J* = 22.0 Hz); MS (m/z) calcd for C₁₃H₉FOS 233.0, found 233.0 (M+H)⁺.

S-Phenyl 4-chlorobenzothioate³

White solid, mp: 56 – 58°C; IR (neat, cm⁻¹) 1675 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.97 (d, *J* = 8.8 Hz, 2H), 7.57 – 7.42 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 189.0, 140.1, 135.1, 135.0, 129.7, 129.3, 129.1, 128.8, 126.9; MS (m/z) calcd for C₁₃H₉ClOS 249.0, found 249.0 (M+H)⁺.

S-Phenyl 4-bromobenzothioate³

White solid, mp: 94 – 96°C; IR (neat, cm⁻¹) 1673 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.88 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.53 – 7.43 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 188.8, 134.9, 134.6, 131.6, 129.2, 128.9, 128.4, 128.3, 126.4; MS (m/z) calcd for C₁₃H₉BrOS 293.0, found 293.0 (M+H)⁺.

S-Phenyl 3-bromobenzothioate²

White solid, $42 - 44^{\circ}$ C; IR (neat, cm⁻¹) 1674 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.14 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.53 – 7.45 (m, 5H), 7.37 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 188.5, 137.9, 136.0, 134.5, 130.0, 139.8, 129.3, 128.9, 126.3, 125.6, 122.5; MS (m/z) calcd for C₁₃H₉BrOS 293.0, found 293.0 (M+H)⁺.

S-Phenyl 2-bromobenzothioate³

White solid, $56 - 58^{\circ}$ C; IR (neat, cm⁻¹) 1702 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.71 (dd, J = 7.6 Hz, 2.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.49 – 7.43 (m, 3H), 7.42 – 7.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 191.1, 139.2, 134.6, 134.1, 132.4, 129.8, 129.4, 129.0, 127.4, 127.3, 119.1; MS (m/z) calcd for C₁₃H₉BrOS 293.0, found 293.0 (M+H)⁺.

S-Phenyl 4-methoxybenzothioate²

White solid, 92 – 94°C; IR (neat, cm⁻¹) 1666 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.00 (d, *J* = 9.2 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.46 – 7.41 (m, 3H), 6.95 (d, *J* = 9.2 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 188.6, 164.0, 135.2, 129.7, 129.4, 129.3, 129.2, 127.7, 113.9, 55.6; MS (m/z) calcd for C₁₄H₁₂O₂S 267.0, found 267.0 (M+Na)⁺.

S-Phenyl 2-fluorobenzothioate⁶

White solid, mp: 44 – 46°C; IR (neat, cm⁻¹) 1715; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.92 (t, *J* = 7.6 Hz, 1H), 7.58 – 7.50 (m, 3H), 7.49 – 7.43 (m, 3H), 7.29 – 7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 187.2 (d, *J* = 5.2 Hz), 160.5 (d, *J* = 256.5 Hz), 135.0, 134.6 (d, *J* = 8.8 Hz), 129.9 (d, *J* = 1.6 Hz), 129.7, 129.3, 127.2 (d, *J* = 4.2 Hz), 125.2 (d, *J* = 11.5 Hz), 124.3 (d, *J* = 3.7 Hz), 117.0 (d, *J* = 22.1 Hz); MS (m/z) calcd for C₁₃H₉FOS 233.0, found 233.0 (M+H)⁺.

S-Phenyl 2-chlorobenzothioate²

White solid, mp: 53 – 55°C; IR (neat, cm⁻¹) 1705 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.76 (d, *J* = 7.6 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.49 – 7.39 (m, 5H), 7.35 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 190.2, 137.1, 134.7, 132.4, 131.1, 131.0, 129.8, 129.4, 129.2, 127.4, 126.7; MS (m/z) calcd for C₁₃H₉ClOS 249.0, found 249.0 (M+H)⁺.

S-Phenyl thiophene-2-carbothioate²

Colorless oil; IR (neat, cm⁻¹) 1655 (C=O); ¹H NMR (400 MHz, CDCl₃); (δ , ppm): 7.90 (dd, J = 3.6 Hz, 1.2 Hz, 1H), 7.65 (dd, J = 5.2 Hz, 1.2 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.45 – 7.41 (m, 3H), 7.16 – 7.12 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 182.0, 141.4, 135.1, 133.3, 131.6, 129.7, 129.3, 128.0, 126.9; MS (m/z) calcd for C₁₁H₈OS₂ 221.0, found 221.0 (M+H)⁺.

S-Phenyl naphthalene-2-carbothioate²

White solid, mp: 118 – 120°C; IR (neat, cm⁻¹) 1670 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.62 (s, 1H), 8.04 – 8.98 (m, 2H), 7.91 (t, *J* = 8.8 Hz, 2H), 7.64 – 7.55 (m, 4H), 7.50 – 7.46 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 90.1, 135.9, 135.2, 134.0, 132.5, 129.6, 129.5, 129.3, 129.0, 128.7, 128.7, 127.9, 127.5, 127.0, 123.3; MS (m/z) calcd for C₁₇H₁₂OS 265.1, found 265.1 (M+H)⁺.

S-4-Methoxyphenyl ethanethioate⁴

Colorless oil; IR (neat, cm⁻¹) 1764 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 7.34 – 7.29 (m, 2H), 6.96 – 6.91 (m, 2H), 3.82 (s, 3H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 195.2, 160.7, 136.1, 118.7, 114.9, 55.3, 29.9; MS (m/z) calcd for C₉H₁₀O₂S 205.0, found 205.0 (M+Na)⁺.

S-p-Tolyl benzothioate⁷

White solid, mp: 75 – 77°C; IR (neat, cm⁻¹) 1667 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.93 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 190.6, 139.8, 136.7, 135.1, 133.6, 130.1, 128.7, 127.5, 123.8, 21.4; MS (m/z) calcd for C₁₄H₁₂OS 229.1, found 229.1 (M+H)⁺.

S-4-Methoxyphenyl benzothioate⁸

White solid, mp: 92 – 94°C; IR (neat, cm⁻¹) 1668 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.01 (dd, *J* = 8.0 Hz, 1.2 Hz, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.43 – 7.39 (m, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 191.1, 160.8, 136.7, 133.6, 128.7, 127.5, 117.9, 115.0, 55.4; MS (m/z) calcd for C₁₄H₁₂O₂S 245.1, found 245.1 (M+H)⁺.

S-Benzyl benzothioate⁹

White solid, mp: $36 - 38^{\circ}$ C; IR (neat, cm⁻¹) 1661 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.99 - 7.93 (m, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.37 (d, J = 7.2 Hz, 2H), 7.33 - 7.28 (m, 2H), 7.27 - 7.22 (m, 1H), 4.32 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 191.3, 137.5, 136.8, 133.5, 129.0, 128.7, 128.6, 127.4, 127.3, 33.4; MS (m/z) calcd for C₁₄H₁₂OS 229.1, found 229.1 (M+H)⁺.

S-Propyl benzothioate ¹⁰

Colorless oil; IR (neat, cm⁻¹) 1663 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.90 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 2.99 (t, J = 7.2 Hz, 2H), 1.69 – 1.59 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 192.1, 137.3, 133.2, 128.6, 127.2, 30.9, 23.0, 13.5; MS (m/z) calcd for C₁₀H₁₂OS 181.1, found 181.1 (M+H)⁺.

S-o-Tolyl benzothioate 11

White solid, mp: 62 – 64°C; IR (neat, cm⁻¹) 1665 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.07 – 8.03 (m, 2H), 7.62 – 7.57 (m, 1H), 7.51 – 7.45 (m, 3H), 7.39 – 7.34 (m, 2H), 7.28 – 7.24 (m, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm): 189.7, 142.7, 136.8, 136.4, 133.6, 130.8, 130.2, 128.7, 127.6, 126.8, 126.7, 20.8; MS (m/z) calcd for C₁₄H₁₂OS 229.1, found 229.1 (M+H)⁺.

S-2,6-Dimethylphenyl benzothioate¹²

White solid, $56 - 58^{\circ}$ C; IR (neat, cm⁻¹) 1669 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.08 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.28 - 7.23 (m, 1H), 7.19 (d, *J* = 7.2 Hz, 2H), 2.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 189.1, 143.3, 137.0, 133.5, 130.0, 128.7, 128.4, 127.6, 126.7, 21.8; MS (m/z) calcd for C₁₅H₁₄OS 243.1, found 243.1 (M+H)⁺.

S-2-Chlorophenyl benzothioate³

White solid, mp: 72 – 74°C; IR (neat, cm⁻¹) 1676 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.07 – 8.01 (m, 2H), 7 64 – 7.58 (m, 2H), 7.58 – 7.54 (m, 1H), 7.52 – 7.46 (m, 2H), 7.43 – 7.38 (m, 1H), 7.36 – 7.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 188.3, 139.2, 137.6, 136.4, 133.9, 131.3, 130.4, 128.9, 127.7, 127.4, 127.0; MS (m/z) calcd for C₁₃H₉ClOS 249.0, found 249.0 (M+H)⁺.

S-2-Fluorophenyl benzothioate

White solid, mp: 62 – 64°C; IR (neat, cm⁻¹) 1678 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.06 – 8.01 (m, 2H), 7.64 – 7.58 (m, 1H), 7.53 – 7.44 (m, 4H), 7.25 – 7.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 188.2, 162.6 (d, *J* = 248.2 Hz), 137.2, 136.2, 133.9, 132.3 (d, *J* = 8.2 Hz), 128.8, 127.7, 124.7 (d, *J* = 3.8 Hz), 116.3 (d, *J* = 22.5 Hz), 114.8 (d, *J* = 18.5 Hz); MS (m/z) calcd for C₁₃H₉FOS 233.0, found 233.0 (M+H)⁺.

S-Thiophen-2-yl benzothioate

Colorless oil; IR (neat, cm⁻¹) 1662 (C=O); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.07 – 8.01 (m, 2H), 7.68 – 7.62 (m, 2H), 7.52 (t, *J* = 8.0 Hz, 2H), 7.30 – 7.27 (m, 1H), 7.21 – 7.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 189.8, 136.3, 136.0, 134.0, 132.2, 128.9, 127.9, 127.6, 124.2; MS (m/z) calcd for C₁₁H₈OS₂ 221.0, found 221.0 (M+H)⁺.

Reference:

1. T. Uno, T. Inokuma, Y. Takemoto, Chem. Commun., 2012, 48, 1901.

- 2. X. Zhu, Y. Shi, H. Mao, Y. Cheng, C. Zhu, Adv. Synth. Catal., 2013, 355, 3558.
- 3. C. He, X. Qian, P. Sun, Org. Biomol. Chem., 2014, 12, 6072.
- 4. W. Dan, H. Deng, J. Chen, M. Liu, J. Ding, H. Wu, Tetrahedron. 2010, 66, 7384.
- 5. S. S. Friedrich, L. J. Andrews, R. M. Keefer, J. Org. Chem., 1972, 37, 3007.
- 6. L. Prangova, T. Strelow, J. Voss, J. Chem. Res., miniprint, 1985, 4, 1401.
- 7. M. Arisawa, M. Kuwajima, F. Toriyama, G. Li, M. Yamaguchi, Org. Lett., 2012, 14, 3804.
- 8. T. Uno, T. Inokuma, Y. Takemoto, Chem. Commun., 2012, 48, 1901.
- 9. H. Nambu, K. Hata, M. Matsugi, Y. Kita, Chem. Eur. J., 2005, 11, 719.
- 10. N. Iranpoor, H. Firouzabadi, D. Khalili, S. Motevalli, J. Org. Chem., 2008, 73, 4882.
- 11. H. Cao, L. McNamee, H. Alper, J. Org. Chem., 2008, 73, 3530.
- 12. M. Barbero, I. Degani, S. Dughera, R. Fochi, Syhthesis, 2003, 8, 1225

Copy of HRMS and NMR Spectra for desired products:

-S26-

-S33-

