Electronic Supplementary Information

Synthesis of pillar[n]arenes (n=5,6) with deep eutectic solvent choline

chloride 2FeCl₃

Jin Cao, Yuhan Shang, Bin Qi, Xuzhuo Sun, Lei Zhang, Huiwen Liu, Haibo Zhang* and Xiaohai Zhou

Table of Contents

1. Experimental section	2
2.Characterization data and spectra for 1b.	3
3. Characterization data and spectra for 1c	5
4. Characterization data and spectra for 2b	7
5. Characterization data and spectra for 3b	9
6.Characterization data and spectra for 3c	11
7. Characterization data and spectra for 4b	13
8. Characterization data and spectra for 4c	15
9. Characterization data and spectra for 5b	17
10.Characterization data and spectra for 5c	19
11. Reference	21

1.Experimental section

Materials. All reagents and solvents for syntheses were purchased from commercial sources and used without further purification. 1, 4-dibutyloxybenzene (**3a**), 1, 4-dihexyloxybenzene (**4a**) and 1, 4-dioctyloxybenzene (**5a**) were synthesized according to the papers.^{S1}

Measurements. The ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer at 298K. The chemical shifts (δ) were given in part per million relative to internal tetramethylsilane (TMS, 0 ppm for ¹H), CDCl₃ (77.3 ppm for ¹³C). ESI-MS measurement was performed on Thermo Finnigan LCQ advantage at 298K. All MALDI-TOF-MS spectra were recorded with an Axima TOF2 mass spectrometry. EPR spectra were recorded on a Bruker X-band A200 spectrometer. The solution sample was taken out into a small tube and then analyzed by EPR. EPR spectra was recorded at 298K on EPR spectrometer operating at 9.420 GHz. Typical spectrometer parameters were: scan range, 3000 G; center field set, 3361 G; time constant, 163.84 ms; scan time, 30.00 s; modulation amplitude 2.0 G; modulation frequency 100 kHz; receiver gain 1.00*10⁴; microwave power, 19.71 mW.

Preparation of deep eutectic solvent. A mixture of the ferric chloride (FeCl₃) and choline chloride in a molar ratio of 2:1 was heated to 100°C with gentle stirring until a dark brown clear liquid formed.

The synthesis process of pillar[n]arenes. To the solution of 1,4-diethoxybenzene (**1a**) (1.6620g, 10 mmol) in dichloromethane (150 ml) was added paraformaldehyde (0.9000g, 30 mmol). And then, [ChCl][FeCl₃]₂ (0.6970g 1.5 mmol) was added to the solution. After the mixture stirred at 25°C for 4h, the reaction was quenched by addition of water. The organic phase was separated and washed with saturated aqueous NaHCO₃, H₂O, and brine. The crude product was purified by column chromatograph to yield **1b** (CH₂Cl₂/petroleum ether = 3 : 1), **1c** (CH₂Cl₂/petroleum ether = 100 : 1).

2. Characterization data and spectra for 1b.

¹H NMR (400 MHz, CDCl₃): δ 6.73 (s, 1H), 3.83 (q, *J*=6.92 Hz, 2H), 3.77 (s, 1H,), 1.27 (t, *J*=6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 128.4, 115.0, 63.7, 29.8,15.1. HR ESI-MS calcd. for C₅₅H₇₀O₁₀Na [M+Na]⁺913.4867, found 913.4.

Fig S1 ¹H NMR spectrum of **1b** (CDCl₃; 400MHz).

Fig S2 ¹³C NMR spectrum of **1b** (CDCl₃; 100MHz).

Fig S3 HR ESI-MS of **1b**.

3. Characterization data and spectra for 1c.

¹H NMR (400 MHz, CDCl₃): δ 6.69 (s, 1H), 3.88 – 3.74 (m, 3H), 1.29 (t, *J* = 5.9 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 150.4, 127.8, 115.2, 64.0, 30.9, 15.2. HR ESI-MS calcd. for C₆₆H₈₄O₁₂Na [M+Na]⁺ 1091.5860, found 1091.5.

Fig S4 ¹H NMR spectrum of **1c** (CDCl₃; 400MHz).

Fig S5 ¹³C NMR spectrum of **1c** (CDCl₃; 100MHz).

Fig S6 HR ESI-MS of 1c.

4. Characterization data and spectra for 2b.

¹H NMR (400 MHz, CDCl₃): δ 6.76 (s, 1H), 3.77 (s, 1H), 3.65 (s, 3H).¹³C NMR (100 MHz, CDCl₃): δ 150.9, 128.3, 114.2, 55.9, 29.8. HR ESI-MS calcd. for C₄₅H₅₀O₁₀Na [M+Na]⁺773.3032, found 773.3.

Fig S7 ¹H NMR spectrum of **2b** (CDCl₃; 400MHz).

Fig S8 ¹³C NMR spectrum of **2b** (CDCl₃; 100MHz).

5. Characterization data and spectra for 3b.

¹H NMR (400 MHz, CDCl₃): δ 6.83 (s, 1H), 3.85 (t, *J* = 6.5 Hz, 2H), 3.75 (s, 1H), 1.82 – 1.70 (m, 2H), 1.57 – 1.46 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 128.1, 114.5, 67.9, 32.1, 29.3, 19.5, 14.0. HR ESI-MS calcd. for C₄₅H₅₀O₁₀Na [M+Na]⁺ 1193.7997, found 1193.7.

Fig S11 ^{13}C NMR spectrum of **3b** (CDCl₃; 100MHz).

Fig S12 HR ESI-MS of **3b**.

6. Characterization data and spectra for 3c.

¹H NMR (400 MHz, CDCl₃): δ 6.71 (s, 1H), 3.78 (s, 1H), 3.75 (t, J = 6.5 Hz, 2H), 1.77 – 1.63 (m, 2H), 1.43 (dq, J = 14.7, 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.5, 127.8, 115.0, 32.0, 30.9, 19.5, 14.0.HR ESI-MS calcd. for C₉₀H₁₃₂O₁₀Na [M+Na]⁺ 1427.9616, found 1427.8.

Fig S14 ¹³C NMR spectrum of **3c** (CDCl₃; 100MHz).

Fig S15 HR ESI-MS of **3c**.

7. Characterization data and spectra for 4b.

¹H NMR (400 MHz, CDCl₃): δ 6.83 (s, 1H), 3.84 (t, *J* = 5.7 Hz, 2H), 3.75 (s, 1H), 1.88 – 1.74 (m, 2H), 1.52 (m, 2H), 1.41 – 1.27 (m, 4H), 0.97 – 0.86 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 149.9, 128.2, 114.9, 68.4, 31.9, 30.0, 29.4, 26.2, 22.7, 14.2. HR ESI-MS calcd. for C₉₅H₁₅₀O₁₀Na [M+Na]⁺ 1474.1127, found 1474.0.

Fig S16 ¹H NMR spectrum of **4b** (CDCl₃; 400MHz).

Fig S17 ¹³C NMR spectrum of **4b** (CDCl₃; 100MHz).

Fig S18 HR ESI-MS of 4b.

8. Characterization data and spectra for 4c.

¹H NMR (400 MHz, CDCl₃): δ 6.72 (s, 1H), 3.81 - 3.72 (m, 3H), 1.80 - 1.63 (m, 2H), 1.51 - 1.36 (m, 2H), 1.28 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 150.4, 127.6, 114.9, 68.4, 31.8, 29.8, 29.5, 26.0, 22.7, 14.1. HR ESI-MS calcd. for C₁₁₄H₁₈₀O₁₂Na [M+Na]⁺ 1764.3373, found 1764.1.

Fig S19 ¹H NMR spectrum of 4c (CDCl₃; 400MHz).

Fig S20 ¹³C NMR spectrum of **4c** (CDCl₃; 100MHz).

Fig S21 HR ESI-MS of 4c.

9. Characterization data and spectra for 5b.

¹H NMR (400 MHz, CDCl₃): δ 6.87 (s, 1H), 3.87 (s, 2H), 3.77 (s, 1H), 1.83 (s, 2H), 1.53 (m, 2H), 1.42 – 1.15 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.82, 128.16, 114.73, 68.31, 31.93, 30.02, 29.74, 29.42, 26.51, 22.78, 14.24. MS (MALDI-TOF) calcd. for C₁₁₅H₁₉₀O₁₀ [M]⁺ 1731.4359, found 1731.91.

Fig S22 ¹H NMR spectrum of **5b** (CDCl₃; 400MHz).

Fig S23 ¹³C NMR spectrum of **5b** (CDCl₃; 100MHz).

Fig S24 MS (MALDI-TOF) of 5b.

10. Characterization data and spectra for 5c.

¹H NMR (400 MHz, CDCl₃): δ 6.71 (s, 1H), 3.84 – 3.67 (m, 3H), 1.80 – 1.65 (m, 2H), 1.43 (s, 2H), 1.36 – 1.22 (m, 8H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.40, 127.59, 114.89, 68.45, 31.99, 29.93, 29.68, 29.44, 26.40, 22.74, 14.16. MS (MALDI-TOF) calcd. for C₁₁₅H₁₉₀O₁₀ [M+H]⁺ 2078.7264, found 2078.64.

Fig S27 MS (MALDI-TOF) of 5c.

11.Reference

S1 P. Paduraru, R. Popoff, R. Nair, R. Gries, G. Gries and E. Plettner, J. Comb. Chem. 2008, 10, 123–134.