Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary information

Real-time Selective Monitoring of Allergenic *Aspergillus* Molds using Pentameric Antibody-Immobilized Single-Walled Carbon Nanotube-Field Effect Transistors

Joon-Hyung Jin, Junhyup Kim, Taejin Jeon, Su-Kyoung Shin, Jong-Ryeul Sohn, Hana Yi, and Byung Yang Lee*

Figure S1. Magnified optical image of hemocytometer cells for counting fungal cells. Note that each square has a side length of 0.25 mm and the depth of the well is 0.1 mm exactly.

Supplementary information

Molds	A. alternata	C. cladosporioides	P. chrysogenum	A. niger
I _N (%) ^a	52.0 ± 9.5	62.1 ± 0.34	62.1 ± 9.4	108 ± 6.6

Table S1. I_N of WF-AF-1 Abs-immobilized SWNT-FET with injections of various molds: injection volume = 5 µL; each molds are suspended in a 1.5 mM PBS solution; initial volume of electrolyte solution = 50 µL; concentration of the injected mold solution = 1.8×10^7 spores mL⁻¹. Here, I_N (%) = $(I - I_0)/I_0 \times 100$ (%), where I_0 = initial current response in the absence of molds, I= current response in the presence of molds.

Supplementary information

Figure S2. Measurement of mold mass using ultra-microbalance chamber (XF2U, Mettler Toledo). The dried molds were placed in a PCR tube, and three silica gels containers were placed around it to remove moisture effect.

Supplementary information

Determination of mobility of SWNT sensor transducers

Carrier mobility μ can be calculated from the following equation:

$$\mu = \frac{L}{W \cdot C_d \cdot V_{sd}} \cdot \frac{\partial I_d}{\partial V_g} \quad (1)$$

where $L=10 \text{ }\mu\text{m}$, $W=5 \text{ }\mu\text{m}$, $V_{sd} = 0.1 \text{ V}$ denote SWNT channel length, width, source-drain voltage, respectively. Transconductance $dI_d/dV_g = 104.5 \text{ }\text{nA} \text{ }\text{V}^{-1}$ can be extracted from the slope of I_d - V_g curve in air shown in Fig. 5(d). In case of the gate capacitance C_d , we considered the parallel plate model and the serial quantum capacitance model with inter-tube coupling effects (V. K. Sangwan et al., ACS Nano, 2012, **6**, 7480.).

In case of parallel plate model:

$$C_{d} = \frac{\varepsilon_{0}\varepsilon_{d}}{t_{d}} = \frac{3.9 \times 8.85 \times 10^{-14} \, F \cdot cm^{-1}}{300 \times 10^{-7} \, cm} = 1.15 \times 10^{-8} \, F \cdot cm^{-2} \tag{2}$$

In case of serial quantum capacitance with inter-tube coupling effects:

$$C_{d} = \left\{ \frac{1}{2\pi\varepsilon_{0}\varepsilon_{d}} \ln\left[\frac{2\Lambda_{0}}{d}\frac{\sinh(2\pi t_{d}/\Lambda_{0})}{\pi}\right] + C_{Q}^{-1} \right\} \times \Lambda_{0}^{-1} = 7.9 \times 10^{-9} F \cdot cm^{-2} \quad (3)$$

where Λ_0^{-1} , d, and C_Q representing the linear density, diameter, and the quantum capacitance of nanotubes are 5 µm⁻², ~1.5 nm, and 4.0 × 10⁻¹⁰ F m⁻¹, respectively. The oxide thickness t_d was 300 nm. ε_0 and ε_d denote the vacuum permittivity and silicon dioxide dielectric constant, respectively. The calculated carrier mobility is 5.6 and 8.1 cm² (V·s)⁻¹, respectively, for each value of capacitance.