SUPPLEMENTARY INFORMATION

Gold-supported magnetically recyclable nanocatalysts:

a sustainable solution for the reduction of 4-nitrophenol in water

Mariana Rocha,^a Carlos Fernandes,^a Clara Pereira,^{a,*} Susana L. H. Rebelo,^{a,*} Manuel F. R. Pereira^b and Cristina Freire^{a,*}

- a REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- b Laboratório de Catálise e Materiais Laboratório Associado LSRE/LCM,
 Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal

Figure S1. FTIR spectra of Mn, Mn@SiO₂, Mn@SiO₂_NH₂ and Mn@SiO₂_SH samples.

Figure S2. TEM micrographs of (a.1) Mn@SiO₂_SH and (a.2) Mn@SiO₂_SH@Au and EDS spectra of (b.1) Mn@SiO₂_SH and (b.2) Mn@SiO₂_SH@Au.

Figure S3. *M*(*H*) curves of samples Mn, Mn@SiO₂, Mn@SiO₂_NH₂, Mn@SiO₂_SH at

300 K.

Figure S4. Electronic spectra of 4-NP reduction with $Mn@SiO_2_NH_2$ nanosupport.

Figure S5. FTIR spectra of magnetic nanocatalysts before and after the catalytic recycling studies.

stuares.

	C 1s		O 1s		N 1s		Si 2p		Mn 2p _{3/2}		Mn 2p _{1/2}	
Material	BE	Area	BE	Area	BE	Area	BE	Area	BE	Area	BE	Area
	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b
	284.6 (3.1)	84.1	531.7 (2.2)	82.7	399.4 (2.5)	59.8	102.6 (1.9)	100.0	641.0 (5.0)	87.6	652.6 (4.9)	43.8
Mn@SiO ₂ _NH ₂	286.5 (3.1)	9.7	529.8 (2.2)	17.3	401.2 (2.5)	40.2			646.4 (5.1) ^c	12.4	658.0 (5.1) ^c	6.2
	288.5 (3.1)	6.2										
Mn@SiO2_NH2@Au	284.6 (2.2)	69.5	532.4 (2.1)	95.5	399.6 (2.3)	52.8	103.1 (2.2)	100.0	641.1 (4.4)	73.3	652.7 (4.4)	36.7
	286.4 (2.2)	24.8	530.4 (2.1)	4.5	401.6 (2.3)	47.2			646.5 (4.1)°	26.7	658.1 (4.1) ^c	13.3
	288.5 (2.2)	5.7									()	
Mn@SiO2_SH	284.6 (2.1)	74.7	532.5 (2.1)	94.6	400.3 (2.4)	75.5	103.2 (2.2)	100.0	642.6 (4.2)	80.3	654.2 (4.2)	40.2
	286.3 (2.1)	19.0	531.0 (2.1)	5.4	402.5 (2.4)	24.5			648.0 (3.8)°	19.7	659.6 (3.8)°	9.8
	288.4 (2.1)	6.2										
Mn@SiO2_SH@Au	284.6 (2.5)	82.5	532.7 (2.0)	73.0	399.5 (2.6)	62.0	102.9 (2.3)	100.0	642.4 (4.4)	85.9	654.0 (4.4)	43.0
	286.5 (2.5)	14.0	531.5 (2.0)	27.0	402.2 (2.6)	38.0			647.8 (2.9)°	14.1	659.4 (2.9)°	7.0
	288.6 (2.5)	3.5										
	Fe 2p _{3/2}		Fe 2p _{1/2}		S 2p _{3/2}		S 2p _{1/2}		Au 4f _{7/2}		Au 4f _{5/2}	
	BF	Area	BF	Area	RF	Area	BF	Area	BF	Area	BF	Area
	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b
Mn@SiO ₂ _NH ₂	710 3 (3 2)	69.9	723 8 (3 2)	35.0		_		_		_		
	718.3 (7.2) ^c	30.1	731.8 (7.2) ^c	15.0								
	710 5 (3 3)	64.5	724 0 (3 3)	37.3		_	_	_	84 2 (2 0)	57 1	87.9 (2.0)	12 0
Mn@SiO ₂ _NH ₂ @Au	718.5 (6.3) ^c	35.5	732.0 (6.3) ^c	17.7		_			ט.2 (2.0)	57.1	07.9 (2.0)	т2.)
	710 7 (3 5)	72.8	72/ 2 (3 5)	36 /	163 3 (2 0)	11 3	164 5 (2 0)	<u>,,,,</u>	_	_	_	_
Mn@SiO ₂ _SH	718 7 (7 2)	27.2	732.2(3.3)	13.6	168.3(2.0)	22.3	169.5(2.0)	11.2				
	, 10., (,.2)	41.4	, 52.2 (, .2)	15.0	100.5 (2.0)	22.5	107.5 (2.0)	11.4				

Table S1. Core-level binding energies and area of each component for magnetic nanomaterials obtained by curve fitting of XPS spectra

Mn@SiO ₂ SH@Au	710.3 (3.2)	69.9	723.8 (3.2)	35.0	162.7 (2.3)	38.2	163.9 (2.3)	19.1	84.5 (2.3)	57.1	88.2 (2.3)	42.9
- - -	718.3 (7.2)°	30.1	731.8 (7.2)°	15.0	167.8 (2.3)	28.4	169.0 (2.3)	14.2				

^a The values between brackets refer to the full-width at half maximum of the bands. ^b Area of each component relative to the total core-level peak area. ^c Satellite peak.