SUPPORTING INFORMATION

<u>Manuscript title:</u> Positive and negative allosteric effects of thiacalix[4]arene-based receptors having urea and crown–ether moieties

<u>Author(s)</u>: Hirotsugu Tomiyasu,^{*a*} Zhao Jiang-Lin,^{*a*} Xin–Long Ni,^{*b*} Xi Zeng,^{*b*} Mark R. J. Elsegood,^{*c*} Beth Jones,^{*c*} Carl Redshaw,^{*d*} Simon J. Teat,^{*e*} and Takehiko Yamato^{*a**}

^a Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502 Japan, E-mail: yamatot@cc.saga-u.ac.jp

^b Department Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China.

^c Chemistry Department, Loughborough University, Loughborough LE11 3TU, UK.

^d Department of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK

^e ALS, Berkeley Lab, 1 Cyclotron Road, Bereleley, CA 94720, USA.

Contents (S1 to S22 are the page numbers)

- S1~S2 Title, authors and description of supporting information content
- S3~S9 ¹H NMR and ¹³C NMR spectra of all compounds 2, 3, 4a~e (Fig. S1~S14)
- S10~S11 X-ray crystal structures of receptor 4b and 4e
- S12 Experimental Section of ¹H NMR and UV-vis titration experiments
- S13~S15 ¹H NMR stack plots of solutions of **4a~e** upon addition of Bu₄NCl (Fig. S17~S21)

Benesi-Hildebrand plot of 4e for various concentrations of Cl⁻ ion at 298K by the ¹H NMR titration method (Fig. S22)

- S16 Concentration-dependent ¹H NMR spectra of 4e (Fig. S23)
 Benesi-Hildebrand plot of 4e for various concentrations of Cl⁻ ion at 298K by the UV-vis titration method (Fig. S24)
- S17– Job's plot showing the 1:1 binding of 4e to Cl⁻ ion from the fluorescence method (Fig. S25)
 The solution color of reseptor 4e (2.5μM) (Fig. S26)
- S18~S20 UV–vis absorption spectra of 4e (2.5µM) upon the addition of increasing
 - concentrations of various anions (Fig. S27~31)

¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of **4e**

- $(4.0 \times 10^{-3} \text{ M})$ upon addition of KSO₃CF₃ (Fig. S32)
- S21~S22 Changes in chemical shifts of protons and the selective absorption behaviour of receptor **4e** towards K⁺ ion by ¹H NMR and UV–vis titration experiments (Fig. S**33**~S**36**)

Figure S1. ¹H–NMR spectra of **2** (300 MHz, CDCl₃, 293 K).

Figure S2. ¹³C–NMR spectra of **2** (75 MHz, CDCl₃, 293 K).

Figure S3. ¹H–NMR spectra of 3 (300 MHz, CDCl₃, 293 K).

Figure S4. ¹³C–NMR spectra of **3** (75 MHz, CDCl₃, 293 K).

Figure S5. ¹H–NMR spectra of 4_a (300 MHz, CDCl₃–DMSO, 293 K).

Figure S6. ¹³C–NMR spectra of 4_a (75 MHz, CDCl₃–DMSO, 293 K).

Figure S7. ¹H–NMR spectra of 4_b (300 MHz, CDCl₃–DMSO, 293 K).

Figure S8. ¹³C–NMR spectra of 4_b (75 MHz, CDCl₃–DMSO, 293 K).

Figure S9. ¹H–NMR spectra of 4_c (300 MHz, CDCl₃–DMSO, 293 K).

Figure S10. ¹³C–NMR spectra of 4_c (100 MHz, CDCl₃–DMSO, 293 K).

Figure S11. ¹H–NMR spectra of 4_d (300 MHz, CDCl₃–DMSO, 293 K).

Figure S12. ¹³C–NMR spectra of 4_d (100 MHz, CDCl₃–DMSO, 293 K).

Figure S13. ¹H–NMR spectra of 4_e (300 MHz, CDCl₃–DMSO, 293 K).

Figure S14. ¹³C–NMR spectra of 4_e (100 MHz, CDCl₃–DMSO, 293 K).

Figure S15. a) X-ray crystal structure of the asymmetric unit of receptor 4_b . H-bonds shown as dashed lines. b) & c) One of two similar molecules in the asymmetric unit is shown in two orientations rotated by approx. 90°. H atoms not involved in H-bonding, minor disorder components, and solvent of crystallization are omitted for clarity.

X-ray crystal structure of receptor 4e

Figure S16. X–ray crystal structure of the asymmetric unit of receptor 4_e . H–bonds shown as dashed lines. H atoms not involved in H-bonding, minor disorder components, and solvent of crystallization are omitted for clarity.

Experimental Section

Selective absorption behaviours of receptors $4_{a\sim e}$ to various anions. The UV-vis titration experiments of $4_{a\sim e}$ were investigated by addition of anions (100 µL) (7.5 mM in CH₃CN solution) to 3 mL of $4_{a\sim e}$ solution (2.5 µM in CDCl₃-DMSO, 10:1, v/v), respectively. The excitation wavelength was 343 nm.

 K^+ *titration of receptor* 4_e *solution determined by absorption.* The UV-vis titration experiment of 4_e was investigated by adding increasing concentrations of KSO₃CF₃ (50 μ L) (3.8 mM in CH₃CN solution) to 3 mL of 4_e solution (2.5 μ M in CDCl₃–DMSO, 10:1, v/v) in a cuvette. The spectra were recorded immediately after mixing. The excitation wavelength was 343 nm.

Selective absorption behaviours of receptor $4_e \cdot K^+$ to various anions. The fluorescent response of $L \cdot K^+$ to different anions was investigated by addition of KSO₃CF₃ (50 µL) (4.5 mM in CH₃CN) to 3 mL of 4_e solution (2.5 µM in CDCl₃–DMSO, 10:1, v/v) in a cuvette. The experiment was then further carried out by addition of anion (100 µL) (7.5 mM in CH₃CN solution) to the $4_e \cdot K^+$ solution. The UV–vis spectra were recorded immediately after mixing. The excitation wavelength was 343 nm.

¹*H* NMR titration experiments of 4_e , $4_e \cdot K^+$, $4_e \cdot K^+$ with Cl and $4_e \cdot K^+$ with Br. The ¹H NMR titration experiment was investigated by addition 10 μ L of KSO₃CF₃ (2.2 ×10⁻¹ M) to the solution of 4_e (CDCl₃–DMSO, 10:1, v/v) (4 × 10⁻³M) in NMR tube (560 μ L). Then further experiment was carried out by addition of increasing concentrations of Bu₄NCl or Bu₄NBr in CH₃CN solution (2.2 × 10⁻¹ M). The spectra were recorded after mixing and the temperature of the NMR probe was kept constant at 298K.

Figure S17. ¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of 4_a (4.0 × 10⁻³ M) upon addition of Bu₄NCl in CD₃CN. $K_a = 6816 (\pm 545) \text{ M}^{-1}$.

Figure S18. ¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of 4_b (4.0 × 10⁻³ M) upon addition of Bu₄NCl in CD₃CN. $K_a = 6945 (\pm 625) \text{ M}^{-1}$.

Figure S19. ¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of 4c (4.0 × 10⁻³ M) upon addition of Bu₄NCl in CD₃CN. $K_a = 3021 (\pm 242) \text{ M}^{-1}$.

Figure S20. ¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of 4d (4.0 × 10⁻³ M) upon addition of Bu₄NCl in CD₃CN. $K_a = 34411 (\pm 2400) \text{ M}^{-1}$.

Figure S21. ¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of 4_e (4.0 × 10⁻³ M) upon addition of Bu₄NCl in CD₃CN. K_a = 34411 (±2400) M⁻¹.

Figure S22. Benesi-Hildebrand plot of 4_e for various concentrations of Cl⁻ ion at 298K by the ¹H NMR titration method. The associate constant (K_a) was calculated to be 34411 (±2753) M⁻¹.

Figure S23. Concentration-dependent ¹H NMR spectra of $\mathbf{4}_{e}$ in CDCl₃–DMSO (10:1, v/v). (a = 4.0×10^{-2} M, b = 4.0×10^{-3} M, c = 8.0×10^{-4} M, d = 4.0×10^{-4}). *Denotes the solvent peak.

Figure S24. Benesi-Hildebrand plot of $\mathbf{4}_{e}$ for various concentrations of Cl⁻ at 298K by the UV-vis titration method. The associate constant (K_{a}) was calculated to be 34152 (±2732) M⁻¹.

Figure S25. Job's plot showing the 1:1 binding of 4_e to Cl⁻ ion from the UV-vis titration method at 390 nm in CH₂Cl₂–DMSO (10:1, v/v).

Figure S26. The solution color of reseptor $4_e(2.5\mu M)$ in the absence and presence of 5 equivalents of various anions.

Figure S27. UV–vis absorption spectra of 4_e (2.5µM) upon the addition of increasing concentrations of Br– ion in CH₂Cl₂–DMSO (10:1, v/v).

Figure S28. UV–vis absorption spectra of 4_e (2.5µM) upon the addition of increasing concentrations of I– ion in CH₂Cl₂–DMSO (10:1, v/v).

Figure S29. UV–vis absorption spectra of 4_e (2.5µM) upon the addition of increasing concentrations of AcO⁻ ion in CH₂Cl₂–DMSO (10:1, v/v).

Figure S30. UV–vis absorption spectra of 4_e (2.5µM) upon the addition of increasing concentrations of PhCO₂⁻ ion in CH₂Cl₂–DMSO (10:1, v/v).

Figure S31. UV–vis absorption spectra of 4_e (2.5µM) upon the addition of increasing concentrations of H₂PO₄⁻ ion in CH₂Cl₂–DMSO (10:1, v/v).

Figure S32. ¹H NMR stack plot of a CDCl₃–DMSO (10:1, v/v) solution of 4_e (4.0 × 10⁻³ M) upon addition of KSO₃CF₃ in CD₃CN. Binding mode of receptor 4_e upon complexation with K⁺ ion.

Figure S33. UV–vis absorption spectra of receptor 4_e (2.5 μ M) upon the addition of KSO₃CF₃ (0-50 μ M) in CH₂Cl₂–DMSO (10:1, v/v).

Figure S34. Benesi-Hildebrand plot of 4_e with varied concentrations K⁺ ion at 298K. The associate constant (K_a) was calculated to be $28536 \pm 1998 \text{ M}^{-1}$ in CH₂Cl₂–DMSO (10:1:1, v/v).

Figure S35. Job's plot showing the 1:1 binding of $\mathbf{4}_{e}$ to K^{+} ion from fluorescence methods at 390 nm in CH₂Cl₂ –DMSO (10:1, v/v).

Figure S36. Proposed positive allosteric behaviour of receptor $\mathbf{4}_{e}$ with Br⁻ and K⁺ ions. UV–vis absorption spectra of $\mathbf{4}_{e}$ /guest (H/G = 1:1); free $\mathbf{4}_{e}$ (black full line), $\mathbf{4}_{e} \subset \text{KSO}_{3}\text{CF}_{3}$ (red full line), Bu₄NBr \supset [$\mathbf{4}_{e} \subset \text{K}^{+}$] (green broke line), $\mathbf{4}_{e} \subset \text{Bu}_{4}$ NBr (blue full line). Solvent: CH₂Cl₂–DMSO (10:1, v/v). 300 MHz at 298 K.