Density functional study on 3d metal/graphene for removing CO from H₂ feed gas in hydrogen fuel cells

Kai Li,¹ Yang Li,² Hao Tang,^{2,*} Menggai Jiao,¹ Ying Wang ^{1,*}, Zhijian Wu ^{1,*}

¹State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China ² Energy Conversion R&D Center, Central Academy of Dongfang Electric Corporation, Chengdu 611731, P. R. China

Fig. S1 The structures of metal atom (Sc - Zn) adsorption on perfect graphene G_p . ΔE_m denotes the adsorption energy of metal atom on graphene.

Fig. S2 The structures of metal atom (Sc - Zn) adsorption on defect graphene G_d.

Fig. S3 The structures of CO adsorption on M/G_p . The gray and red balls denote the carbon and O atom, respectively. ΔE_{CO} denotes the adsorption energy of CO.

 $\begin{array}{c} {\rm Cu}\\ \Delta E_{{}_{H_2}}=-0.27 eV \end{array}$

Fig. S4 The structures of H₂ adsorption on M/G_p. The gray and red balls denote the carbon and O atom, respectively. ΔE_{H_2} denotes the adsorption energy of H₂.

Fig. S5 The structures of CO adsorption on M/G_d . The gray and red balls denote the

carbon and O atom, respectively.

Fig. S6 The structures of H_2 adsorption on M/G_d . The gray and red balls denote the carbon and O atom, respectively.