Theoretical Studies of 3D-to-planar Structural Transition in Si_nAl_{5-n}^{+1, 0, -1} (n=0-5) Clusters

Jinzhen Zhu¹, Beizhou Wang¹, Jianjun Liu^{1,*}, Huanwen Chen², Wenqing Zhang¹

¹State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

²Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, 330013, China.

^{*} Corresponding email: jliu@mail.sic.ac.cn

Figure S1 B3LYP-Optimized geometries of $Si_nAl_{5-n^+}$ (n=0-5) clusters. The relative energies calculated at CCSD(T)/6-311+G(2d) level are shown in bracket. Bond length and relative energy are presented in the units of Å and kcal/mol.

Figure S2 B3LYP-Optimized geometries of Si_nAl_{5-n} (n=0-5) clusters. The relative energies calculated at CCSD(T)/6-311+G(2d) level are shown in bracket. Bond length and relative energy are presented in the units of Å and kcal/mol.

Figure S3 B3LYP-Optimized geometries of Si_nAl_{5-n} (n=0-5) clusters. The relative energies calculated at CCSD(T)/6-311+G(2d) level are shown in bracket. Bond length and relative energy are presented in the units of Å and kcal/mol.