Supplementary Information

Edge-carboxylated graphene anchoring magnetite-hydroxyapatite nanocomposite for efficient 4-nitrophenol sensor[†]

G. Bharath^a, Vediappan Veeramani^b, Shen-Ming Chen^b, Rajesh Madhu^b, M. Manivel Raja^c, A. Balamurugan, D. Mangalaraj,^a C. Viswanathan,^a N. Ponpandian^{*,a}

^aDepartment of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, India.

^bElectroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and

Biotechnology, National Taipei University of Technology, Taiwan.

^cDefence Metallurgical Research Laboratory, Kanchanbaugh, Hyderabad 500 058, India

Corresponding author, E-mail:ponpandian@buc.edu.in

ESI Fig. 1 (a) Dispersion of edge-carboxylated graphene with different exfoliating solvents of water, ethanol, DMF and NMP and (b) Zeta potential of ECG sheets in water with the concentration of 0.1 mg/mL.

ESI Fig. 2 EDX spectrum and elemental mapping of **m**HAp/ECG nanocomposite. (a-e) elemental mapping of carbon (C), oxygen (O), calcium (Ca), phosphate (P) and iron (Fe) species. (f) EDX spectrum of mHAp/ECGs nanocomposite.

ESI Fig. 3 FTIR spectra for (a) pure natural graphite flakes, (b) ball milled edge-carboxylated graphene sheets and (c) mHAp/ECG nanocomposites

ESI Fig. 4 The UV-vis absorption spectra for (a) edge-carboxylated graphene sheets and (b) mHAp/ECG nanocomposite with the concentration of 0.1 mg/mL.

ESI Fig. 5 Nitrogen-adsorption/desorption isotherms and the inset shows the pore-size distribution of the mHAp/ECG nanocomposite

ESI Fig. 6 Magnetic hysteresis loop for the m-HAp/ECG nanocomposite at room temperature.

ESI Fig. 7 Calibration plot for E_0 vs current density of Fig. 9.

ESI Fig. 8 Calibration plot for E_0 vs current density of Fig. 10.

ESI Fig. 9 Calibration plot for E_0 vs current density of Fig. 12 (4-NP reduction).

ESI Fig. 10. DPV curves of mHAp/ECG nanocomposite modified GCE under various 4-NP concentrations from 23-472 μ M. Inset; anodic oxidation peak current (I_{pa}) vs 4-NP concentration.

Real samples	Analyte	Added (nM)	Found (nM)	Recovery (%)
Tap water	4-NP	50 100	48.7 102.1	97.4 102.1
Rain water	4-NP	50 100	49.6 105.9	99.2 105.9

Table S1. Determination of 4-NP in various water samples using DPV.