Supporting Information

Metal Complexes of Tosyl Sulfonamides: Design, X-ray Structure, Biological Activities and Molecular Docking Studies

Najm Ul Hassan Khan¹, Sumera Zaib^{2,3*}, Kishwar Sultana⁴, Imtiaz Khan⁵, Berline Mougang-Soume⁶, Humaira Nadeem¹ and Mukhtiar Hassan²

¹Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad-44000 Pakistan

²Department of Biochemistry, Hazara University, Garden Campus, Mansehra, 21300, Pakistan ³Centre for Advanced Drug Research, COMSATS Institute of Information Technology,

Abbottabad-22060, Pakistan

⁴Margalla College of Pharmacy, MIHS, Rawalpindi-Pakistan

⁵School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK) ⁶Department of Chemistry, Université de Montréal, Montréal, Québec, Canada

To whom Correspondence should address:

Sumera Zaib

Department of Biochemistry, Hazara University, Garden Campus, Mansehra, 21300, Pakistan.

Tel.: +92 997 414137: Fax: +92 997 530046. E-mail address: <u>sumera.biochem@gmail.com</u>

Figure S1. Binding site interactions of compound NA1.

7

Figure S2. Binding site interactions of compound NA2.

Figure S3. Binding site interactions of compound NA3.

Figure S4. Binding site interactions of compound NA4.

Figure S5. Clustering histogram of compound NA1.

Figure S6. Clustering histogram of compound NA2.

Figure S7. Clustering histogram of compound NA3.

Figure S8. Clustering histogram of compound NA4.

Parameters	Compound (NA3)	
Chemical formula	$C_{13}H_{19}NO_4S$	
Cystal colour	Yellow	
Fw; F (000)	285.35; 608	
Temperature/K	100(2)	
wavelength (Å)	0.71073	
a/Å	5.51320(10)	
b/Å	11.8110(2)	
c/Å	21.7712(3)	
α /°	90.00	
β /°	90.00	
γ /°	90.00	
Volume/Å ³	1417.66(4)	
$\rho_{calcd} mg/mm^3$)	1.337	
μ (mm ⁻¹)	2.127	
θ range (deg); completeness	4.06 - 70.98; 0.996	
collected reflections; R_{σ}	18602; 0.0181	
unique reflections; R _{int}	18602; 0.0253	
R1 ^a ; wR2 ^b [I > $2\sigma(I)$]	0.0314; 0.0837	
R1; wR2 [all data]	0.0320; 0.0841	
Goodness-of-fit on F ²	1.042	
largest diff peak and hole	0.370 and -0.403	

 $aR1=\Sigma(||Fo|-|Fc||)/\Sigma|Fo|$

 $^{b}wR2 = \{\Sigma[w(Fo2-Fc2)2]/\Sigma[w(Fo2)2]\}^{1/2}$

S1-O2	1.4252(14)	С5-Н5С	0.9800
S1-O1	1.4344(13)	C6-C7	1.386(3)
S1-N1	1.6343(14)	С6-Н6	0.9500
S1-C1	1.7736(18)	С7-Н7	0.9500
03-C9	1.209(2)	C8-C9	1.520(2)
04-C9	1.323(2)	C8-C10	1.556(2)
O4-H4	0.8400	С8-Н8	1.0000
N1-C8	1.452(2)	C10-C12	1.531(2)
N1-H1A	0.8800	C10-C11	1.547(3)
C1-C7	1.384(3)	С10-Н10	1.0000
C1-C2	1.393(3)	С11-Н11А	0.9800
C2-C3	1.388(3)	С11-Н11В	0.9800
С2-Н2	0.9500	С11-Н11С	0.9800
C3-C4	1.392(3)	C12-C13	1.518(3)
С3-Н3	0.9500	C12-H12A	0.9900
C4-C6	1.392(3)	C12-H12B	0.9900
C4-C5	1.512(3)	С13-Н13А	0.9800
С5-Н5А	0.9800	С13-Н13В	0.9800
C5-H5B	0.9800	С13-Н13С	0.9800

02-S1-O1	120.61(8)	С6-С7-Н7	120.4
O2-S1-N1	107.97(8)	N1-C8-C9	110.95(14)
01-S1-N1	104.60(8)	N1-C8-C10	110.73(14)
02-S1-C1	107.83(9)	C9-C8-C10	109.34(14)
01-S1-C1	107.96(8)	N1-C8-H8	108.6
N1-S1-C1	107.17(8)	С9-С8-Н8	108.6
С9-О4-Н4	109.5	С10-С8-Н8	108.6
C8-N1-S1	119.78(12)	03-C9-04	124.60(16)
C8-N1-H1A	120.1	03-C9-C8	122.97(17)
S1-N1-H1A	120.1	O4-C9-C8	112.40(14)
C7-C1-C2	120.82(17)	C12-C10-C11	110.46(16)
C7-C1-S1	119.88(14)	C12-C10-C8	110.63(15)
C2-C1-S1	119.25(14)	C11-C10-C8	111.32(15)
C3-C2-C1	119.20(17)	С12-С10-Н10	108.1
С3-С2-Н2	120.4	С11-С10-Н10	108.1
С1-С2-Н2	120.4	C8-C10-H10	108.1
C2-C3-C4	120.93(18)	С10-С11-Н11А	109.5
С2-С3-Н3	119.5	С10-С11-Н11В	109.5
С4-С3-Н3	119.5	H11A-C11-H11B	109.5

 Table S3 Selected bond angles (°) for compound NA3

C6-C4-C3	118.58(18)	С10-С11-Н11С	109.5
C6-C4-C5	120.62(18)	Н11А-С11-Н11С	109.5
C3-C4-C5	120.78(19)	H11B-C11-H11C	109.5
C4-C5-H5A	109.5	C13-C12-C10	113.32(16)
C4-C5-H5B	109.5	С13-С12-Н12А	108.9
Н5А-С5-Н5В	109.5	C10-C12-H12A	108.9
C4-C5-H5C	109.5	С13-С12-Н12В	108.9
Н5А-С5-Н5С	109.5	С10-С12-Н12В	108.9
Н5В-С5-Н5С	109.5	H12A-C12-H12B	107.7
C7-C6-C4	121.32(18)	С12-С13-Н13А	109.5
С7-С6-Н6	119.3	С12-С13-Н13В	109.5
С4-С6-Н6	119.3	H13A-C13-H13B	109.5
C1-C7-C6	119.14(17)	С12-С13-Н13С	109.5
С1-С7-Н7	120.4	Н13А-С13-Н13С	109.5
		H13B-C13-H13C	109.5