Supplementary Information

Insights into the Catalytic Mechanism of Chlorophenol 4-Monooxygenase: A Quantum Mechanics/Molecular Mechanics Study

Yanwei Li[†], Ruiming Zhang[†], Likai Du[‡], Qingzhu Zhang^{†*}, Wenxing Wang[†]

[†]Environment Research Institute, Shandong University, Jinan 250100, P. R. China

[‡]Key Laboratory of Bio-based Materials, Qingdao Institute of Bio-energy and

Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China

Keywords

Catalytic mechanism, Polychlorinated phenols, Electrostatic influence,

Quantum mechanical/molecular mechanical method

*Corresponding authors. E-mail: <u>zqz@sdu.edu.cn</u>

Fax: 86-531-8836 1990

Six pages

Contains one Table and three Figures

Table S1 Dependency of the energy barriers on the QM size, the smaller QM region (98 atoms) contains oxidation state of co-enzyme FADHOOH, functional groups of residues Arg100, Phe153, Val154, Thr192, His289 and the substrate 2,4,5-TCP, the larger QM region (212 atoms) contains additional residues such as Ala104, Pro150, Leu151, Glu251, Phe285, Cal288, Arg295, Arg366, and Phe442.

Figure S1 The optimized structures at B3LYP/6-31G(d,p) level and calculated energies at B3LYP/6-311++G(d,p) level by using Gaussian program. Energies are given in kcal mol⁻¹. A and C are two possible conformations of 5-Cl-2-H-BQ while B and D are two possible conformations of 4-Cl-3-H-BQ (P-10).

Figure S2 Optimized reactant (R'-1), transition state (TS'-2), and intermediate (IM'-3) structures for the hydroxylation step of TftD towards 2,4,6-TCP at B3LYP/6-31G(d,p)//CHARMM22 level. The unit of the bond distances and imaginary frequency are in Å and cm⁻¹.

Figure S3 Optimized reactant (R-6), transition state (TS-7), and intermediate (IM-8) structures for the hydroxylation step of TftD towards 2,5-DiCHQ at B3LYP/6-31G(d,p)//CHARMM22 level. The unit of the bond distances and imaginary frequency are in Å and cm⁻¹.

Table S1 Dependency of the energy barriers on the QM size, the smaller QM- region (98 atoms) contains oxidation state of co-enzyme FADHOOH, functional groups of residues Arg100, Phe153, Val154, Thr192, His289 and the substrate 2,4,5-TCP, the larger QM-region (212 atoms) contains additional residues such as Ala104, Pro150, Leu151, Glu251, Phe285, Cal288, Arg295, Arg366, and Phe442.

Snapshots	Energy barriers/(kcal mol ⁻¹)	
	Smaller QM-region	Larger QM-region
3 ns	16.3	15.2
4 ns	18.2	17.4
5 ns	24.7	23.2

Figure S1

Figure S2

Figure S3