Supporting Information

A series of temperature-dependent Cd^{II}-complexes containing an important family of N-rich heterocycles from in situ conversion of pyridine-type Schiff base

Yan-Jun Ou,^{a,b} Yu-Jia Ding,^a Qin Wei,^a Xu-Jia Hong,^a Zhi-Peng Zheng,^a Yu-Hua Long,^a Yue-Peng Cai^{*a,b} and Xiang-Dong Yao^{*c}

^aSchool of Chemistry and Environment, South China Normal University;
 Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou
 510006, P.R. China. Fax: +86-020-39310; Tel: +86-020-39310383; E-mail: caiyp@scnu.edu.cn
 ^bState Key Laboratory of Coordination ChemistryNanjing University,
 Hankou Road 22, Nanjing, 210093 P.R.China
 ^cQLD Micro- and Nanotechnology Centre, Griffith University, Nathan campus,
 Nathan QLD 4111, Australia. E-mail: x.yao@griffith.edu.au

1

Content

- 1. Table S1. Crystal data and structure refinement of compounds 1-9 and 1'-2'.
- 2. Table S2. Selected bond lengths and angles for nine compounds 1-9.
- 3. Table S3. Distances (Å) and angles (°) of hydrogen bonds for eight compounds 1-8.
- 4. Figure S1. Cd_6Cl_{13} unit connected through single or double μ_2 -bridging Cl atom in 1.
- 5. Figure S2. 3-D supramolecular network assembled through intermolecular hydrogen bonds C-H…Cl(O) along *c* axis in 2.
- Figure S3. 1-D supramolecular chain constructed by intermolecular hydrogen bonding C-H…Cl interaction along *b* axis in 3.
- 7. Figure S4. 1-D chain assembled via Cl2···Cd1 weak interaction in ac plane in 4.
- 8. Figure S5. 2-D supramolecular layer assembled by intermolecular hydrogen bonding
- 9. C-H···Cl interaction along *b* axis in **4**.
- 10. Scheme S1. The molecular structure of ligand L1'.
- 11. Figure S6. Molecular structure of compound 1' with atomic labels.
- 12. Figure S7. 2-D supramolecular layer assembled by intermolecular hydrogen bonding C-H…Cl interaction along c axis in 1'.
- 13. Figure S8. 3-D surpramolecular network assembled by intermolecular hydrogen bonding C-H…Cl interaction along *b* axis in **5**.
- 14. Figure S9. 1-D chain-like structure assembled via intermolecular hydrogen bonding C-H…Cl and $\pi \dots \pi$ packing interactions in **6**.
- 15. Figure S10. 3-D supramolecular network constructed by intermolecular hydrogen bonding C(O)-H…Cl interactions along *b* axis in 7.
- 16. Figure S11. 2-D supramolecular layer with the thickness of 0.681Å assembled by intermolecular hydrogen bonding C-H···Cl and π ··· π packing interactions along *b* axis in **8**.
- 17. Figure S12. Molecular structure of compound 2'.
- 18. Figure S13. Solid-state emission spectra for compounds 1-9 and ligands L¹⁻⁶ (a, b, c, d ,e ,f) at room temperature.
- 19. Figure S14. UV-vis spectrum for compounds 1-9 and ligands L¹⁻⁶ (a, b, c, d ,e ,f) in acetonitrile at room temperature.
- 20. Figure S15. The TG curves of complexes 1-9 (a-i) at the range of 25-800°C.
- 21. Figure S16. PXRD patterns of as-prepared and nine repeated samples of 1-9(a-i) in comparison with the simulations from the single-crystal data.
- 22. Figure S17 IR spectra of complexes 1-9(a-i).

	1	2	3
Chemical formula	$C_{72}H_{70}Cd_7Cl_{14}N_{18}O_2$	$C_{50}H_{42}Cd_2Cl_2N_{12}O_4$	$C_{48}H_{32}Cd_2Cl_4N_{12}$
М	2502.56	1170.66	1143.46
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> -1	<i>P</i> -1
<i>a</i> /Å	19.5538(15)	9.5160(8)	9.471(5)
b /Å	16.2417(12)	10.9133(9)	10.437(6)
c /Å	27.985(2)	12.1129(10)	13.576(8)
$lpha/^{\circ}$	90	94.787(2)	72.174(7)
β/°	94.8630(10)	90.019(2)	78.698(7)
$\gamma/^{\circ}$	90	108.440(2)	81.504(7)
$V/Å^3$	8855.7(11)	1188.71(17)	1247.3(12)
Ζ	4	1	1
T/K	298(2)	298(2)	298(2)
<i>F</i> (000)	4872	588	568
$D_{\rm calcd}$ / gcm ⁻³	1.877	1.635	1.522
μ /mm ⁻¹	2.125	1.067	1.113
λ /Å	0.71073	0.71073	0.71073
R _{int}	0.0706	0.0295	0.0471
data/restraint/parm	16034 / 7 / 982	4272 / 0 / 318	4422 / 0 / 299
GOF	1.016	1.080	1.037
$R_1 \left[I = 2\sigma(I)\right]^a$	0.0554	0.0552	0.0590
$wR_2 [I = 2\sigma(I)]^b$	0.1273	0.0853	0.0857
R_1 [all data] ^{<i>a</i>}	0.1302	0.1253	0.1372
wR_2 [all data] ^b	0.1642	0.1445	0.1724
Largest diff. peak	0.915 and -1.160	0.508 and -0.503	1.208 and -1.000
and hole(e·Å-3)			

Table S1 Crystal data and structure refinement of three compounds 1-3.

	4	5	6
Chemical formula	$C_{24}H_{18}Cd_2Cl_4N_6O$	$C_{74}H_{58}Cd_4Cl_4N_{20}O_3$	$C_{18}H_{14}CdCl_2N_4$
Μ	773.04	1866.80	469.63
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> 2(1)/ <i>c</i>
<i>a</i> /Å	20.685(3)	12.900(4)	7.5806(12)
b/Å	12.3021(16)	13.916(4)	17.674(3)
c /Å	13.7360(18)	21.676(7)	13.270(2)
$lpha/^{\circ}$	90	90	90
β/°	125.5010(10)	98.187(4)	90.756(2)
γ/°	90	90	90
$V/Å^3$	2845.6(6)	3852(2)	1777.8(5)
Ζ	4	2	4
T/K	298(2)	298(2)	298(2)
<i>F</i> (000)	1504	1852	928
$D_{\rm calcd}$ / gcm ⁻³	1.804	1.610	1.755
μ /mm ⁻¹	1.899	1.288	1.537
λ /Å	0.71073	0.71073	0.71073
$R_{\rm int}$	0.0245	0.0636	0.0478
data/restraint/parm	2584 / 1 / 171	6977 / 3 / 486	3194 / 0 / 226
GOF	1.081	1.018	1.014
$R_1 \left[I = 2\sigma(I)\right]^a$	0.0365	0.0518	0.0420
$wR_2 [I = 2\sigma(I)]^b$	0.0460	0.0927	0.0769
R_1 [all data] ^{<i>a</i>}	0.1007	0.1177	0.0806
wR_2 [all data] ^b	0.1082	0.1421	0.0965
Largest diff. peak	1.015 and -0.597	0.680 and -0.667	0.469 and -0.426
and hole(e·Å-3)			

(to be continued) Table S1 Crystal data and structure refinement of three compounds 4-6.

	7	8	9
Chemical formula	$C_{37}H_{31}Cd_2Cl_4N_8O$	$C_{36}H_{26}Cd_2Cl_4N_8$	$C_{18}H_{12}Cd_2Cl_3N_4O_2$
M	970.30	937.25	647.47
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	<i>P</i> -1	<i>P</i> 2(1)/ <i>c</i>
<i>a</i> /Å	24.137(4)	9.617(15)	11.7730(13)
b/Å	15.255(4)	9.698(16)	19.686(2)
c /Å	23.410(6)	10.175(16)	9.4109(10)
$\alpha/^{\circ}$	90	89.54(3)	90
β/°	114.065(5)	79.24(2)	107.0280(10)
$\gamma/^{\circ}$	90	86.21(3)	90
$V/Å^3$	7870(3)	930(3)	2085.5(4)
Ζ	8	1	4
T/K	298(2)	298(2)	298(2)
<i>F</i> (000)	3848	462	1244
$D_{ m calcd}$ / gcm ⁻³	1.638	1.673	2.062
μ /mm ⁻¹	1.393	1.468	2.446
λ /Å	0.71073	0.71073	0.71073
R _{int}	0.0886	0.0522	0.0570
data/restraint/parm	7107/0/471	3295 / 0 / 227	3632 / 0 / 262
GOF	0.974	1.017	1.003
$R_1 [I = 2\sigma(I)]^a$	0.0544	0.0592	0.0475
$wR_2 [I = 2\sigma(I)]^b$	0.1484	0.0832	0.0955
R_1 [all data] ^{<i>a</i>}	0.0996	0.1445	0.1013
wR_2 [all data] ^b	0.1290	0.1590	0.1217
Largest diff. peak	0.680 and -0.490	1.104 and -1.186	0.782 and -0.561
and hole(e·Å-3)			

(to be continued) Table S1 Crystal data and structure refinement of three compounds 7-9.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/|F_{o}|, {}^{b}wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)_{2} + bP]. P = (F_{o}^{2} + 2F_{c}^{2})/3.$

	1′	2'
Chemical formula	$C_{26}H_{30}Cd_2Cl_4N_6O_2$	C ₁₄ H ₁₁ CdClN ₄ S
Μ	825.16	415.18
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a /Å	7.3515(10)	8.41(2)
b/Å	9.4349(12)	9.44(2)
c /Å	12.6530(16)	10.76(3)
α/°	100.021(2)	68.21(3)
β/°	102.220(2)	67.16(3)
γ/°	112.091(2)	86.97(3)
$V/\text{\AA}^3$	762.96(17)	727(3)
Ζ	1	2
T/K	298(2)	298(2)
<i>F</i> (000)	408	408
$D_{\rm calcd}$ / gcm ⁻³	1.796	1.897
μ /mm ⁻¹	1.779	1.826
λ/Å	0.71073	0.71073
$R_{\rm int}$	0.0186	0.0393
data/restraint/parm	2499 / 3 / 188	2478 / 0 / 192
GOF	1.070	1.089
$R_1 \left[I = 2\sigma(I)\right]^a$	0.0381	0.0656
$wR_2 [I = 2\sigma(I)]^b$	0.0467	0.1104
R_1 [all data] ^{<i>a</i>}	0.0983	0.1774
wR_2 [all data] ^b	0.1058	0.1253
Largest diff. peak	0.799 and -0.838	1.262 and -1.091
and hole(e·Å ⁻³)		

(to be continued) Table S1 Crystal data and structure refinement of two compounds 1'and 2'

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / |F_{o}|, {}^{b}wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)_{2} + bP]. P = (F_{o}^{2} + 2F_{c}^{2}) / 3.$

		1	
N(17)-Cd(7)	2.334(3)	Cl(1)-Cd(2)-Cl(5)	88.84(10)
N(7)-Cd(3)	2.442(3)	Cl(6)-Cd(2)-Cl(5)	171.43(10)
N(18)-Cd(7)	2.310(4)	Cl(7)-Cd(2)-Cl(5)	84.14(4)
Cd(1)-N(6)#1	2.299(4)	Cl(2)-Cd(2)-Cl(5)	118.72(8)
Cd(1)-N(3)#1	2.304(4)	Cl(1)-Cd(2)-Cl(3)	95.10(4)
Cd(1)-N(1)#1	2.411(4)	Cl(6)-Cd(2)-Cl(3)	171.34(4)
Cd(1)- $Cl(2)$	2.5150(12)	Cl(7)-Cd(2)-Cl(3)	89.53(4)
Cd(1)-N(2)#1	2.547(3)	Cl(2)-Cd(2)-Cl(3)	83.18(4)
Cd(1)-Cl(1)	2.7049(12)	Cl(5)-Cd(2)-Cl(3)	93.67(4)
Cd(2)- $Cl(1)$	2.6202(12)	N(9)-Cd(3)-N(12)	89.23(4)
Cd(2)-Cl(6)	2.6298(12)	N(9)-Cd(3)-N(7)	96.57(4)
Cd(2)-Cl(7)	2.6380(12)	N(12)-Cd(3)-N(7)	83.40(4)
Cd(2)- $Cl(2)$	2.6527(13)	N(9)-Cd(3)-Cl(4)	91.22(4)
Cd(2)- $Cl(5)$	2.6582(12)	N(12)-Cd(3)-Cl(4)	177.04(4)
Cd(2)- $Cl(3)$	2.6994(13)	N(7)-Cd(3)-Cl(4)	89.60(4)
Cd(3)-N(9)	2.293(4)	N(9)-Cd(3)-N(8)	174.51(4)
Cd(3)-N(12)	2.356(4)	N(12)-Cd(3)-N(8)	86.17(4)
Cd(3)-Cl(4)	2.4530(18)	N(7)-Cd(3)-N(8)	89.68(4)
Cd(3)-N(8)	2.493(4)	Cl(4)-Cd(3)-N(8)	93.27(4)
Cd(3)-Cl(3)	2.6982(14)	N(9)-Cd(3)-Cl(3)	138.56(14)
Cd(4)-N(10)	2.311(4)	N(12)-Cd(3)-Cl(3)	94.91(13)
Cd(4)-Cl(8)	2.4441(14)	N(7)-Cd(3)-Cl(3)	78.89(12)
Cd(4)-Cl(9)	2.5612(13)	Cl(4)-Cd(3)-Cl(3)	107.33(11)
Cd(4)-Cl(7)	2.5738(13)	N(8)-Cd(3)-Cl(3)	113.76(11)
Cd(5)-N(4)	2.395(4)	N(10)-Cd(4)-Cl(8)	105.78(10)
Cd(5)-Cl(6)	2.5949(13)	N(10)-Cd(4)-Cl(9)	96.57(10)
Cd(5)-Cl(9)	2.5974(12)	Cl(8)-Cd(4)-Cl(9)	100.77(5)
Cd(5)-Cl(10)	2.6499(14)	N(10)-Cd(4)-Cl(7)	138.26(10)
Cd(5)- $Cl(5)$	2.6700(11)	Cl(8)-Cd(4)-Cl(7)	112.82(5)
Cd(6)-Cl(11)	2.4409(16)	Cl(9)-Cd(4)-Cl(7)	91.42(4)
Cd(6)-Cl(12)	2.4431(14)	N(4)-Cd(5)-Cl(6)	163.44(9)
Cd(6)-Cl(13)	2.4505(17)	N(4)-Cd(5)-Cl(9)	90.41(9)
Cd(6)-Cl(10)	2.5288(15)	Cl(6)-Cd(5)-Cl(9)	106.13(4)
Cd(7)-N(15)	2.341(5)	N(4)-Cd(5)-Cl(10)	89.80(9)
Cd(7)-N(13)	2.425(5)	Cl(6)-Cd(5)-Cl(10)	90.94(4)
Cd(7)-Cl(14)	2.4340(16)	Cl(9)-Cd(5)-Cl(10)	84.66(4)
Cd(7)-N(14)	2.629(7)	N(4)-Cd(5)-Cl(5)	96.67(9)
N(1)-Cd(1)#2	2.411(4)	Cl(6)-Cd(5)-Cl(5)	83.84(4)

Table S2. Selected atomic distances (Å) and bond angles (°) for compounds 1-9.

N(2)-Cd(1)#2	2.547(3)	Cl(9)-Cd(5)-Cl(5)	91.83(4)
N(3)-Cd(1)#2	2.304(4)	Cl(10)-Cd(5)-Cl(5) 172.67(4)	
N(6)-Cd(1)#2	2.299(4)	Cl(11)-Cd(6)-Cl(12)	111.73(5)
N(6)#1-Cd(1)-N(3)#1	92.07(10)	Cl(11)-Cd(6)-Cl(13)	115.66(6)
N(6)#1-Cd(1)-N(1)#1	69.47(13)	Cl(12)-Cd(6)-Cl(13)	114.73(6)
N(3)#1-Cd(1)-N(1)#1	69.78(13)	Cl(11)-Cd(6)-Cl(10)	113.54(5)
N(6)#1-Cd(1)-Cl(2)	71.27(12)	Cl(12)-Cd(6)-Cl(10)	100.13(5)
N(3)#1-Cd(1)-Cl(2)	162.32(10)	Cl(13)-Cd(6)-Cl(10)	99.35(6)
N(1)#1-Cd(1)-Cl(2)	87.45(10)	N(17)-Cd(7)-N(18)	83.30(11)
N(6)#1-Cd(1)-N(2)#1	95.02(10)	N(17)-Cd(7)-N(15)	104.51(14)
N(3)#1-Cd(1)-N(2)#1	173.06(8)	N(18)-Cd(7)-N(15)	146.78(15)
N(1)#1-Cd(1)-N(2)#1	93.46(6)	N(17)-Cd(7)-N(13)	149.82(13)
Cl(2)-Cd(1)-N(2)#1	103.62(10)	N(18)-Cd(7)-N(13)	80.78(14)
N(6)#1-Cd(1)-Cl(1)	137.39(13)	N(15)-Cd(7)-N(13)	76.82(16)
N(3)#1-Cd(1)-Cl(1)	88.85(13)	N(17)-Cd(7)-Cl(14)	98.88(9)
N(1)#1-Cd(1)-Cl(1)	97.08(14)	N(18)-Cd(7)-Cl(14)	109.22(11)
Cl(2)-Cd(1)-Cl(1)	121.22(10)	N(15)-Cd(7)-Cl(14)	101.50(12)
N(2)#1-Cd(1)-Cl(1)	101.14(10)	N(13)-Cd(7)-Cl(14)	110.51(11)
Cl(1)-Cd(2)-Cl(6)	88.64(9)	N(17)-Cd(7)-N(14)	89.1(2)
Cl(1)-Cd(2)-Cl(7)	71.79(12)	N(18)-Cd(7)-N(14)	73.45(14)
Cl(6)-Cd(2)-Cl(7)	71.15(12)	N(15)-Cd(7)-N(14)	74.43(14)
Cl(1)-Cd(2)-Cl(2)	69.28(12)	N(13)-Cd(7)-N(14)	61.8(2)
Cl(6)-Cd(2)-Cl(2)	154.88(8)	Cl(14)-Cd(7)-N(14)	171.77(18)
Cl(7)-Cd(2)-Cl(2)	90.97(9)		
		2	
Cd(1)-N(2)	2.160(5)	N(2)-Cd(1)-Cl(1)	127.53(13)
Cd(1)-N(4)#1	2.255(5)	N(4)#1-Cd(1)-Cl(1)	98.56(14)
Cd(1)-N(3)	2.428(5)	N(3)-Cd(1)-Cl(1)	102.71(13)
Cd(1)- $Cl(1)$	2.4504(18)	N(2)-Cd(1)-N(1)	66.81(17)
Cd(1)-N(1)	2.572(5)	N(4)#1-Cd(1)-N(1)	92.00(18)
N(2)-Cd(1)-N(4)#1	131.11(18)	N(3)-Cd(1)-N(1)	137.05(18)
N(2)-Cd(1)-N(3)	70.35(18)	Cl(1)-Cd(1)-N(1)	100.68(13)
N(4)#1-Cd(1)-N(3)	119.14(18)		
		3	
Cd(1)-N(2)	2.345(8)	N(3)-Cd(1)-Cl(2)	109.4(2)
Cd(1)-N(1)	2.365(7)	N(2)-Cd(1)-Cl(1)	93.7(2)
Cd(1)-N(3)	2.370(7)	N(1)-Cd(1)-Cl(1)	90.0(2)
Cd(1)-Cl(2)	2.470(3)	N(3)-Cd(1)-Cl(1)	98.1(2)
Cd(1)-Cl(1)	2.525(3)	Cl(2)-Cd(1)-Cl(1)	101.44(9)
Cd(1)-Cl(2)#1	2.863(3)	N(2)-Cd(1)-Cl(2)#1	81.24(19)

Cl(2)-Cd(1)#1	2.863(3)	N(1)-Cd(1)-Cl(2)#1	88.1(2)
N(2)-Cd(1)-N(1)	68.8(2)	N(3)-Cd(1)-Cl(2)#1 80.2(2)	
N(2)-Cd(1)-N(3)	68.5(3)	Cl(2)-Cd(1)-Cl(2)#1	83.60(9)
N(1)-Cd(1)-N(3)	136.9(3)	Cl(1)-Cd(1)-Cl(2)#1	174.96(8)
N(2)-Cd(1)-Cl(2)	164.8(2)	Cd(1)-Cl(2)-Cd(1)#1	96.40(9)
N(1)-Cd(1)-Cl(2)	110.22(19)		
		4	
Cd(1)-N(3)	2.3424(18)	N(3)-Cd(1)-Cl(2)	113.69(5)
Cd(1)-N(1)	2.3679(19)	N(1)-Cd(1)-Cl(2)	106.79(5)
Cd(1)-N(2)	2.4268(13)	N(2)-Cd(1)-Cl(2)	146.23(6)
Cd(1)-Cl(2)	2.4298(8)	N(3)-Cd(1)-Cl(1)	96.12(6)
Cd(1)-Cl(1)	2.4996(10)	N(1)-Cd(1)-Cl(1)	91.64(6)
N(3)-Cd(1)-N(1)	135.57(5)	N(2)-Cd(1)-Cl(1)	110.03(5)
N(3)-Cd(1)-N(2)	68.48(6)	Cl(2)-Cd(1)-Cl(1)	103.32(3)
N(1)-Cd(1)-N(2)	67.77(6)		
		5	
Cd(1)-N(7)	2.224(5)	N(1)-Cd(1)-N(9)	157.61(19)
Cd(1)-N(2)	2.328(5)	N(7)-Cd(1)-Cl(1)	122.56(15)
Cd(1)-N(1)	2.359(5)	N(2)-Cd(1)-Cl(1)	106.57(15)
Cd(1)-N(9)	2.418(5)	N(1)-Cd(1)-Cl(1)	98.53(14)
Cd(1)-Cl(1)	2.442(2)	N(9)-Cd(1)-Cl(1)	103.66(15)
Cd(2)-N(4)	2.208(5)	N(4)-Cd(2)-N(10)	131.28(19)
Cd(2)-N(10)	2.299(5)	N(4)-Cd(2)-N(6)	98.34(19)
Cd(2)-N(6)	2.363(5)	N(10)-Cd(2)-N(6)	82.94(19)
Cd(2)-N(5)	2.425(6)	N(4)-Cd(2)-N(5)	72.2(2)
Cd(2)-Cl(2)	2.440(2)	N(10)-Cd(2)-N(5)	86.5(2)
N(7)-Cd(1)-N(2)	130.05(19)	N(6)-Cd(2)-N(5)	155.2(2)
N(7)-Cd(1)-N(1)	98.15(18)	N(4)-Cd(2)-Cl(2)	122.63(15)
N(2)-Cd(1)-N(1)	81.88(18)	N(10)-Cd(2)-Cl(2)	105.10(14)
N(7)-Cd(1)-N(9)	72.40(18)	N(6)-Cd(2)-Cl(2)	98.11(14)
N(2)-Cd(1)-N(9)	88.87(18)	N(5)-Cd(2)-Cl(2)	106.30(16)
		6	
Cd(1)-N(2)	2.240(5)	N(2)-Cd(1)-Cl(2)	98.16(13)
Cd(1)-N(1)	2.393(5)	N(1)-Cd(1)-Cl(2)	100.50(12)
Cd(1)-Cl(1)	2.4158(17)	Cl(1)-Cd(1)-Cl(2)	112.06(6)
Cd(1)-Cl(2)	2.4676(17)	N(2)-Cd(1)-N(4)	67.5(2)
Cd(1)-N(4)	2.477(5)	N(1)-Cd(1)-N(4) 134.20(17)	
N(2)-Cd(1)-N(1)	79.6(2)	Cl(1)-Cd(1)-N(4)	92.43(15)

N(2)-Cd(1)-Cl(1)	148.92(13)	Cl(2)-Cd(1)-N(4)	114.57(12)
N(1)-Cd(1)-Cl(1)	101.03(15)		
		7	
Cd(1)-N(2)	2.251(4)	Cl(1)-Cd(1)-Cl(2)	116.90(7)
Cd(1)-N(3)	2.417(4)	N(2)-Cd(1)-N(1)	67.76(17)
Cd(1)-Cl(1)	2.430(2)	N(3)-Cd(1)-N(1)	143.95(17)
Cd(1)-Cl(2)	2.437(2)	Cl(1)-Cd(1)-N(1)	102.09(13)
Cd(1)-N(1)	2.452(6)	Cl(2)-Cd(1)-N(1)	93.81(15)
Cd(2)-N(6)	2.270(4)	N(6)-Cd(2)-N(5)	77.64(16)
Cd(2)-N(5)	2.427(5)	N(6)-Cd(2)-Cl(4)	137.26(14)
Cd(2)-Cl(4)	2.431(2)	N(5)-Cd(2)-Cl(4)	99.33(14)
Cd(2)-N(7)	2.434(5)	N(6)-Cd(2)-N(7)	69.45(17)
Cd(2)-Cl(3)	2.461(2)	N(5)-Cd(2)-N(7)	142.32(15)
N(2)-Cd(1)-N(3)	81.32(16)	Cl(4)-Cd(2)-N(7)	92.86(15)
N(2)-Cd(1)-Cl(1)	102.66(12)	N(6)-Cd(2)-Cl(3)	108.20(14)
N(3)-Cd(1)-Cl(1)	102.40(13)	N(5)-Cd(2)-Cl(3)	99.97(13)
N(2)-Cd(1)-Cl(2)	139.32(13)	Cl(4)-Cd(2)-Cl(3)	114.23(6)
N(3)-Cd(1)-Cl(2)	98.22(13)	N(7)-Cd(2)-Cl(3)	107.21(15)
		8	
Cd(1)-N(2)	2.319(5)	N(2)-Cd(1)-Cl(2)	142.06(18)
Cd(1)-N(1)	2.450(7)	N(1)-Cd(1)-Cl(2)	91.30(15)
Cd(1)-Cl(1)	2.480(4)	Cl(1)-Cd(1)-Cl(2)	112.33(8)
Cd(1)-Cl(2)	2.481(4)	N(2)-Cd(1)-N(3)	77.58(17)
Cd(1)-N(3)	2.529(6)	N(1)-Cd(1)-N(3)	135.22(19)
N(2)-Cd(1)-N(1)	69.81(18)	Cl(1)-Cd(1)-N(3)	107.52(18)
N(2)-Cd(1)-Cl(1)	105.10(17)	Cl(2)-Cd(1)-N(3)	96.38(12)
N(1)-Cd(1)-Cl(1)	110.0(2)		
		9	
Cd(1)-N(2)	2.319(5)	N(2)-Cd(1)-Cl(2)	142.06(18)
Cd(1)-N(1)	2.450(7)	N(1)-Cd(1)-Cl(2)	91.30(15)
Cd(1)-Cl(1)	2.480(4)	Cl(1)-Cd(1)-Cl(2)	112.33(8)
Cd(1)-Cl(2)	2.481(4)	N(2)-Cd(1)-N(3)	77.58(17)
Cd(1)-N(3)	2.529(6)	N(1)-Cd(1)-N(3)	135.22(19)
N(2)-Cd(1)-N(1)	69.81(18)	Cl(1)-Cd(1)-N(3)	107.52(18)
N(2)-Cd(1)-Cl(1)	105.10(17)	Cl(2)-Cd(1)-N(3)	96.38(12)
N(1)-Cd(1)-Cl(1)	110.0(2)		

D-HA	Distance(D-H)	Distance(H···A)	Distance(D····A)	Angle(D-H···A)		
		1				
N(11)-H(11)Cl(7)	0.86	2.491(3)	3.339(4)	171.1(4)		
N(5)-H(5)Cl(10)	0.86	2.870(2)	3.705(3)	164.7(3)		
N(16)-H(16A…Cl(11)#1	0.86	2.823(2)	3.329(9)	119.3(2)		
		2				
C(1)-H(1)····Cl(1)#2	0.93	2.455(3)	3.741(3)	157.1(5)		
C(13)-H(13)····Cl(1)#2	0.93	2.927(3)	3.624(3)	132.9(4)		
C(11)-H(11)····O(1)#3	0.93	2.563(3)	3.749(3)	158.5(5)		
C(22)-H(22)#4…Cl(1)	0.93	2.948(3)	3.675(3)	136.2(7)		
		3				
C(22)-H(22)···Cl(1)#5	0.93	2.928(2)	3.723(3)	144.2(8)		
		4				
C(4)-H(4)····Cl(1)#6	0.93	2.861(3)	3.548(3)	131.7(1)		
C(2)-H(2)····Cl(2)#7	0.93	2.713(3)	3.635(3)	171.6(1)		
		5				
C(31)-H(31)····Cl(1)#8	0.93	2.939(3)	3.486(3)	119.1(2)		
C(10)-H(10)····Cl(2)#9	0.93	2.862(3)	3.777(3)	167.8(2)		
C(36)-H(36)····Cl(2)#10	0.93	2.940(3)	3.528(3)	122.5(2)		
		6				
C(12)-H(12)····Cl(1)#11	0.93	2.737(2)	3.580(3)	151.1(3)		
C(15)-H(15)····Cl(1)#11	0.93	2.904(2)	3.774(3)	156.3(3)		
$\pi^{a}\cdots\pi^{a}$		3.770(3)				
$\pi^{a}\cdots\pi^{a}$		3.608(3)				
$\pi^{a}\cdots\pi^{b}$		3.964(3)				
$\pi^{a\cdots}\pi^{b}$		3.802(3)				
$\pi^{a}\cdots\pi^{b}$		3.821(3)				
7						
C(17)-H(17)····Cl(2)#12	0.93	2.934(3)	3.622(3)	131.9(3)		
C(1)-H(1)····Cl(2)#14	0.93	2.921(3)	3.496(3)	121.3(3)		
C(1)- $H(1)$ ···· $Cl(1)$	0.93	2.931(3)	3.563(3)	126.4(2)		
C(12)-H(12)····Cl(3)#13	0.93	2.877(3)	3.494(3)	125.0(3)		
C(19)-H(19)····Cl(3)	0.93	2.877(3)	3.565(3)	131.7(3)		
C(2)-H(2)····Cl(4)#15	0.93	2.922(3)	3.551(3)	126.3(3)		
C(6)- $H(6)$ ···· $Cl(4)$	0.93	2.707(3)	3.680(3)	172.7(2)		
C(9)-H(9)····Cl(4)	0.93	2.872(3)	3.770(3)	162.7(2)		

Table S3 Distances (Å) and angles (°) of hydrogen bonds for compounds 1-8.

8					
C(10)-H(10)····Cl(1)#16	0.93	2.865(3)	3.777(3)	167.3(5)	
C(13)-H(13)····Cl(1)#16	0.93	2.886(3)	3.859(3)	171.6(3)	
C(16)-H(16)····Cl(1)#17	0.93	2.871(3)	3.649(3)	141.9(5)	
C(18)-H(18)····Cl(2)	0.93	2.849(3)	3.552(3)	133.3(4)	

*Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z+1/2; #2 1-x,2-y,2-z; #3 1+x, 1+y,z; #4 -x,2-y,1-z; #5 x,-1+y,z; #6 0.5-x,-0.5+1,0.5-z; #7 -x,-y,-z; #8 1-x,1-y,-z; #9 2-x,0.5+y,0.5-z; #10 1-x,0.5+y,0.5-z; #11 2-x,-y,1-z; #12 -x, y,0.5-z; #13 x,1-y,-0.5+z; #14 -x,2-y,1-z; #15 0.5-x,0.5+y,1.5-z; #16 -x,2-y,2-z; #17 x,y,1+z; #18.

*Sign π^a represents the centroid of the pyridine ring, and π^b represents the centroid of the imidazole ring.

Figure S1

Figure S2

Figure S4

Scheme S1

Figure S6

Figure S13

(b)

(d)

(a)

(b)

(f)

Figure S15

(a)

(b)

(d)

(f)

(e)

(h)

Figure S17 (a) For compound 1

(b) For compound 2

(c) For compound 3

(d) For compound 4

(e) For compound 5

(f) For compound 6

(g) For compound 7

(h) For comound 8

(i) For compound 9

