Electronic supplementary information for

Ge@C Core-Shell Nanostructures for Improved Anode Rate Performance in Lithium-Ion Batteries

Tingting Qiang,^a Jiaxin Fang,^a Yixuan Song,^a Qiuyang Ma,^a Ming Ye,^a Zhen Fang, * a and Baoyou Geng^{* a}

^a Key Laboratory of Functional Molecular Solids, Ministry of Education. Center for Nano Science and Technology. College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China; E-mail: fzfscn@mail.ahnu.edu.cn, bygeng@mail.ahnu.edu.cn.

Characterization details

Fig. S1. (a) SEM image of Ge NPs. (b) TEM images of Ge NPs.

Fig. S2. TGA curves of the Ge@C nanocomposites.

Fig. S3. N_2 adsorption/desorption isotherms and pore-size distribution curves of Ge@C nanocomposites.

Fig. S4. Cycling performance of Ge@C nanostructures at 500 mAh g^{-1} for 100 cycles (0.01 V - 1.5 V versus Li⁺/Li).

Fig. S5. (a) SEM and (b) TEM images of Ge@C nanocomposites electrodes cycled after 50 cycles at 500mA/g.