Supplementary Data

Enhancement of advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol

Xinmei Xiong,^{a,b} Yuankui Sun,^a Bo Sun,^a Weihua Song,^c Jingyi Sun,^a Naiyun Gao,^a

Junlian Qiao,^a Xiaohong Guan^{a,*}

^aState Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China

^bDepartment of Civil Engineering, Jiujiang University, Jiujiang 332005, Jiangxi, China

^cDepartment of Environmental Science & Engineering, Fudan University, Shanghai, P.

R. China

*Corresponding author contact information:

Xiaohong Guan, Email: guanxh@tongji.edu.cn, Phone: +86-21-65980956

Number of pages (including this page): 18

Number of Texts: 1

Number of Figures: 10

Text S1

To identify the existence of hydroxyl radicals, the electron paramagnetic resonance (EPR) signals of radicals trapped by 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) were obtained using an EPR spectrometer (Bruker A200 ESP 300E) equipped with a Quanta-ray Nd/YAG laser system and an irradiation light source (k = 355 nm) at ambient temperature. The experimental condition was: the center field of 338.2 mT, sweep width of 5 mT, a sweep time of 110 s, microwave frequency of 9.80 GHz, and microwave power of 5.65 mW.

Fig. S1. (a) SEM image and (b) Particle size distribution of Fe^0 employed in this study.

Fig. S2. The experimental setup of nonuniform MF.

Fig. S3. Removal of 4-NP by H_2O_2 alone or Fe^0 alone (a, without WMF; b, with WMF). Reaction conditions: $[4-NP]_0 = 0.02 \text{ mM}$, $[H_2O_2]_0 = 0.5 \text{ mM}$, $[Fe^0]_0 = 0.5 \text{ mM}$, $pH_{ini} = 4.0$, T = 25 °C.

Fig. S4. Influence of WMF on 4-NP removal by Fe^0/H_2O_2 system at different pH_{ini} levels (a, pH_{ini} 3.0; b, pH_{ini} 4.0; c, pH_{ini} 5.0; d, pH_{ini} 6.0). Reaction conditions: [4-NP]₀ = 0.02 mM, $[H_2O_2]_0 = 0.5 mM$, $[Fe^0]_0 = 0.5 mM$, T = 25 °C.

Fig. S5. Effect of radical quenching agent on 4-NP removal in WMF-Fe⁰/H₂O₂ system at pH_{ini} 6.0. Reaction conditions: $[TBA]_0 = 0.1 \text{ M}$, $[4\text{-NP}]_0 = 0.02 \text{ mM}$, $[H_2O_2]_0 = 0.5 \text{ mM}$, $[Fe^0]_0 = 0.5 \text{ mM}$, T = 25 °C.

Fig. S6. (a) The MF strength distributions of the plane parallel to the applied uniform MF (with the applied flux densities of 5 mT, 10 mT and 20 mT, respectively) and through the center of a Fe⁰ sphere; (b) The MF gradients around a Fe⁰ sphere when the flux densities of applied MF are 5 mT, 10 mT and 20 mT, respectively. The arrow shows the direction of the applied uniform MF.

Fig. S7 Aggregation of Fe^0 particles under a uniform MF of 50 mT.

Fig. S8. Comparison between the calculated and experimental values of the output.

Fig. S9. Response surface plots of the rate constant of 4-NP for the three most

important pair of factors.

Fig. S10. Influence of premagnetization on 4-NP removal by Fe^0/H_2O_2 . Reaction conditions: $[4-NP]_0 = 0.02 \text{ mM}$, $[H_2O_2]_0 = 0.5 \text{ mM}$, $[Fe^0]_0 = 0.5 \text{ mM}$, $pH_{ini} = 4.0$, T = 25 °C.

Time (min)	0.1% FA-Water (%)	0.1% FA-Acetonitrile (%)	Flow rate (mL min ⁻¹)
0	95	5	0.4
1	80	20	0.4
3	55	45	0.4
6	0	100	0.4
9	0	100	0.4
9.5	95	5	0.4
11.5	95	5	0.4

 Table S1 Details of the LC-MS/MS gradient program.

Independent factors	Units	Symbol	Coded levels		
			-1	0	+1
pН	-	А	2.0	4.0	6.0
Fe ⁰ dosage	mМ	В	0.10	0.55	1.00
H ₂ O ₂ dosage	mM	С	0.10	0.55	1.00

 Table S2 Experimental range and levels of the independent variables.

Source	Sum of squares	of squares d.f. Mean square		F-ratio	P-value
Model	1.1863	9	0.1318	24.6245	0.0002
A-pH	0.9086	1	0.9086	169.7338	< 0.0001
B-Fe ⁰	0.0777	1	0.0777	14.5089	0.0066
C-H ₂ O ₂	0.0263	1	0.0263	4.9114	0.0622
AB	0.0532	1	0.0532	9.9293	0.0161
AC	0.0397	1	0.0397	7.4121	0.0297
BC	0.0000	1	0.0000	0.0000	0.9992
A^2	0.0799	1	0.0799	14.9273	0.0062
B^2	0.0010	1	0.0010	0.1774	0.6862
\mathbb{C}^2	0.0002	1	0.0002	0.0380	0.8511
Residual	0.0375	7	0.0054		
Lack of Fit	0.0334	3	0.0111	10.7975	0.0218
Pure Error	0.0041	4	0.0010		
Cor Total	1.2238	16			

Table S3 ANOVA test for response function Y.

Table S4 Comparison of the experimental and predicted values of the response for

pН	Fe ⁰ (mM)	H_2O_2 (mM)	$Sqrt(k_{obs})$	$Sqrt(k_{obs})$		
			Observed	Predicted		
3.75	1.00	0.10	0.3028	0.3455		
3.75	0.55	0.55	0.2559	0.3064		
5.50	0.55	1.00	0.0678	0.0717		

diffierent experimental points.

MW (m/z)	Chemical structure	Ultrasonic Irradiatio ³³	Electro- Fenton ³¹	Plasma- TiO ₂ ³⁴	UV/H ₂ O ₂ ³²	Photo- Fenton ³⁵	Wet electrocatalytic oxidation ³⁶	Ozonatio ³⁷	WMF-Fe ⁰ /H ₂ O ₂ (This study)
139	02N-ОН				√ Detec	ted - Un	idetected		
94	ОН	-	-	\checkmark	-	-	-	\checkmark	-
108	0=	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	-
108	0	-	-	-	-	-	-	\checkmark	-
109	но-√о.	\checkmark	-	\checkmark	-	-	-		-
110	но	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	-
110	ОН	-	-	\checkmark	-	-	-	\checkmark	-
123	он	-	-	-	-	-	-	-	\checkmark
124	о	-	-	-	-	-	\checkmark	-	-
126	но-Он	-	\checkmark	-	\checkmark	-	\checkmark	-	-
153		-	-	-	-	\checkmark	-	-	-

Table S5 Summary of intermediates detected in various processes for 4-NP oxidation (" $\sqrt{}$ " stands for detected and "-" stands for non-detected).

