Electronic Supporting Information

Solvent-Free Heterogeneous Catalysis for Cyanosilylation in Modified Sodalite-typed Cu(II)-MOF

Ling-Juan Zhang, Cai-Yun Han, Qin-Qin Dang, Yan-Hong Wang and Xian-Ming Zhang*

School of Chemistry & Material Science, Shanxi Normal University Linfen 041004, P. R. China

Table S1. Crystal data and structure refinement for complex 1.

Complex 1					
Empirical formula	$C_{24}H_{16}Cl_{0.31}Cu_4N_{32}O_{4.6}$				
	9				
Formula weight	1092.90				
Temperature	293(2)K				
Crystal system	cubic				
Space group	Pm-3m				
<i>a</i> (Å)	18.6233(12)				
<i>b</i> (Å)	18.6233(12)				
<i>c</i> (Å)	18.6233(12)				
α (°)	90.00				
eta (°)	90.00				
$\gamma(^{\circ})$	90.00				
$V(Å^3)$	6459.1(7)				
Ζ	3				
$\rho_{\rm calc}$, (g cm ⁻³)	0.843				
μ , (mm ⁻¹)	1.022				
F(000)	1628.0				
Size (mm)	0.22×0.22×0.20				
$ heta\!(^\circ)$	5.36 to 52.7°				
Reflections/unique	6572				

0.8065/0.8218		
1266/0/48		
1500/0/48		
1.056		
0.0705		
0.2205		
-0.730/1.157		

 ${}^{a}R_{1} = F_{o} - F_{c}/F_{o}, {}^{b}wR_{2} = [w(F_{o}^{2} - F_{c}^{2})^{2}/w(F_{o}^{2})^{2}]^{1/2}$

Table S2. Bond lengths [Å] for complex 1

complex 1						
Cu1	N2	2.018(3)	N2	N2 ⁴	1.341(6)	
Cu1	N2 ¹	2.018(3)	C1	C2 ⁵	1.397(4)	
Cul	N2 ²	2.018(3)	C1	C2	1.397(4)	
Cu1	N2 ³	2.018(3)	C2	C1 ⁶	1.397(4)	
Cul	O2	2.396(9)	C2	C3	1.480(7)	
N1	N2	1.349(4)	C3	N1 ⁴	1.346(4)	
N1	C3	1.346(4)				

Symmetry codes: (1) +X,+Y,-Z; (2) 1-X,+Y,-Z; (3) 1-X,+Y,+Z; (4) +X,+Z,+Y; (5) +Z,+X,+Y; (6) +Y,+Z,+X.

Table S3. Angles [deg] for complex 1

complexe 1							
N2 ¹	Cu1	N2	91.78(15)	N1	N2	Cu1	128.7(2)
N2 ¹	Cu1	N2 ²	177.13(16)	N2 ⁴	N2	Cu1	121.70(8)
N2	Cu1	N2 ²	88.15(15)	N2 ⁴	N2	N1	109.63(17)
N21	Cu1	N2 ³	88.15(15)	C2 ⁵	C1	C2	119.8(5)
N2	Cu1	N2 ³	177.13(16)	C1 ⁶	C2	C1	120.2(5)

N2 ²	Cu1	N2 ³	91.78(15)	C1 ⁶	C2	C3	119.9(3)
N2	Cul	02	91.44(8)	C1	C2	C3	119.9(3)
N2 ¹	Cul	02	91.44(8)	N1	C3	N1 ⁴	113.3(4)
N2 ³	Cul	02	91.44(8)	N1	C3	C2	123.4(2)
N2 ²	Cul	02	91.44(8)	N1 ⁴	C3	C2	123.4(2)
C3	N1	N2	103.7(3)				

Symmetry codes: 1) +X,+Y,-Z; 2) 1-X,+Y,+Z; 3) 1-X,+Y,-Z; 4) +X,+Z,+Y; 5) +Z,+X,+Y; 6)+Y,+Z,+X

Entry	Cat. mol %	TMSCN	Temp.(℃)	Conv.(%) ^{<i>a</i>}
1	0	3 eq.	r.t.	60
2	2	3 eq.	r.t.	76
3	2	3 eq.	40	98
4	1	3 eq.	40	98
5	0.5	3 eq.	40	84
6	1	2 eq.	40	96

Table S4. The optimization of reaction condition.

^{*a*} Determined by GC based on the carbonyl substrate.

Fig. S1 The PXRD patterns of simulated, experimented and after catalyzed for 1.

Fig. S2 The TGA plots of as-synthesized and methanol exchanged 1 at a heating rate of 10°C min⁻¹ in air.

Fig. S3 The temperature-dependent X-ray diffraction patterns of 1.

Fig. S4 Adsorption isotherms in 1 for the uptake of H_2 at 77 K (a) and CO₂ at 273 K (b).

Fig. S5 Grand canonical Monte Carlo (GCMC) simualted N₂ adsorption isotherms of 1 were employed at 77 K.

Fig. S6 Infrared spectra of 1 in KBr pellet.

Fig. S7 The conversion of the cyanosilylation of benzaldehyde determined by GC: dashed line indicate the conversion after filtration of solid **1**' at 2 h.