Supporting Information

Multiple Deuteration of Alkanes Synergistically-Catalyzed by Platinum and Rhodium on Carbon as a Mixed Catalytic System

Tsuyoshi Yamada,† Yoshinari Sawama,*† Kyoshiro Shibata,† Kosuke Morita, † Yasunari Monguchi† and Hironao Sajiki*†

[†] Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

Contents

- 1. General
- 2. Procedures for Pt/C and Rh/C-catalyzed multi-deuteration of alkanes
- 3. Spectroscopic data of multi-deuterated alkanes
- 4. ¹H and ²H NMR spectra of multi-deuterated alkanes

1. General

10% Pt/C catalyst was obtained from N.E. Chemcat Corporation, Japan. 5% Rh/C catalyst was purchased from the Aldrich Chemical Co. D₂O (>99.9% D atom) was purchased from Spectra Gases, Inc. *i*-PrOD- d_8 (>99.5% D atom) was purchased from the Aldrich Chemical Co. All other reagents were purchased from commercial sources and used without further purification. ¹H and ²H NMR spectra were recorded by a JEOL AL-400, EX-400 (¹H: 400 MHz) or ECA-500 spectrometer (¹H: 500 MHz, ²H: 61 MHz). Chemical shifts (δ) are expressed in ppm and are internally referenced (7.26 ppm for CDCl₃ for ¹H and ²H NMR or 7.16 ppm for benzene- d_6 for ¹H and ²H NMR). All H-D exchange reactions were carried out using a 6 mL stainless-steel sealed tube. The deuterium contents were determined by the ¹H NMR using 1,4-dioxane as the internal standard as a value of integral. The deuterium incorporation was also assigned by the ²H NMR.

2. Procedures for Pt/C and Rh/C-catalyzed multi-deuteration of alkanes

2-1. Typical procedure for Pt/C and Rh/C-catalyzed multi-deuteration of alkanes (Table 1 and Table 2, entries 1-2, 4-7 and 9)

A suspension of an alkane (0.25mmol), 10% Pt/C (15 mol%) and 5% Rh/C (15 mol%) in *i*-PrOD- d_8 (0.5 mL) and D₂O (2 mL) in a 6 mL stainless-steel sealed tube was stirred at 120 °C under atmospheric conditions. After stirring for 24 h, the mixture was cooled to room temperature and filtered by a membrane filter (Milipore, Millex[®]-LH, 0.2 µm) to remove the catalysts. The filtrate was extracted with Et₂O (20 mL) and H₂O (20 mL), and then the aqueous layer was further extracted with Et₂O (10 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtrated and concentrated in vacuo to give the deuterated product.

2-2. Procedure for Pt/C and Rh/C-catalyzed multi-deuteration of alkane (Table 2. entry 3)

A suspension of an alkane (0.125 mmol), 10% Pt/C (30 mol%) and 5% Rh/C (30 mol%) in *i*-PrOD- d_8 (0.5 mL) and D₂O (2 mL) in a 6 mL stainless-steel sealed tube was stirred at 120 °C under atmospheric conditions. After stirring for 24 h, the mixture was cooled to room temperature and filtered by a membrane filter (Milipore, Millex[®]-LH, 0.2 µm) to remove the catalysts. The filtrate was extracted with hexane (20 mL) and H₂O (20 mL), and then the aqueous layer was further extracted with hexane (10 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtrated and concentrated in vacuo to give the deuterated product.

2-3. Procedure for Pt/C and Rh/C-catalyzed multi-deuteration of alkane (Table 2. entry 8)

A suspension of an alkane (0.125 mmol), 10% Pt/C (30 mol%) and 5% Rh/C (30 mol%) in \dot{r} PrOD- d_8 (0.5 mL), D₂O (2 mL) and cyclohexane (0.1 mL) in a 6 mL stainless-steel sealed tube was stirred at 120 °C under atmospheric conditions. After stirring for 24 h, the mixture was cooled to room temperature and filtered by a membrane filter (Milipore, Millex[®]-LH, 0.2 µm) to remove the catalysts. The filtrate was extracted with hexane (20 mL : Table 2, entries 3 and 9) and H₂O (20 mL), and then the aqueous layer was further extracted with hexane (10 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtrated and concentrated in vacuo to give the deuterated product.

3. Spectroscopic data of multi-deuterated alkanes

n-Dodecane-*d*₂₆ (Table 1, entry 5) : 100% (49.1 mg, 250 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.24–1.18 (m, 1.26H), 0.80 (m, 0.27H); ²H NMR (61 MHz, CHCl₃): δ 1.20 (brs), 0.83 (brs).

n-Pentadecane-*d*₃₂ (Table 2, entry 1) : 92% (56.9 mg, 230 μmol) as a colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 1.24–1.17 (m, 1.52H), 0.81 (m, 0.15H); ²H NMR (61 MHz, CHCl₃): δ 1.20 (brs), 0.83 (brs).

n-Eicosane- d_{42} (Table 2, entry 2) : 95% (77.4 mg, 238 µmol) as a colorless oil, ¹H NMR (500 MHz, Benzene- d_6): δ 1.28–1.50 (m, 1.17H), 0.86 (m, 0.32H); ²H NMR (61 MHz, Benzene): δ 1.20 (brs), 0.82 (brs).

n-Hexatriacontane-*d*₇₄ (Table 2, entry 3) : 69% (49.3 mg, 86 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.19–1.25 (m, 6.66H), 0.86 (m, 1.35H); ²H NMR (61 MHz, CHCl₃): δ 1.20 (brs), 0.83 (brs).

n-Hexatriacontane-*d*₇₄ (Table 2, entry 3^{*c*}) : 69% (62.6 mg, 86 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.19–1.25 (m, 8.26H), 0.82–0.89 (m, 0.68H); ²H NMR (61 MHz, CHCl₃): δ 1.19 (brs), 0.82 (brs).

2,2,4,4,6,8,8,-Heptamethylnonane-*d*₃₄ (**Table 2, entry 4**) : 100% (62.2 mg, 250 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.59 (m, 0.47H), 1.03–1.27 (m, 4.97H), 0.85–0.97 (m, 10.21H); ²H NMR (61 MHz, CHCl₃): δ 1.57 (brs), 1.22 (brs), 0.87–0.94 (brd).

2,2,4,4,6,8,8,-Heptamethylnonane-*d*₃₄ (**Table 2, entry 4**^{*c*}) : 100% (60.1 mg, 250 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.59 (m, 0.56H), 1.04–1.24 (m, 5.08H), 0.85–0.97 (m, 7.03H); ²H NMR (61 MHz, CHCl₃): δ 1.54 (brs), 1.18–1.20 (brs), 0.84–0.91 (brd).

Bicyclohexyl-*d*₂₂ (**Table 2, entry 5**) : 86% (39.7 mg, 215 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.62–1.64 (m, 2.14H), 0.88–1.24 (m, 3.00H); ²H NMR (61 MHz, CHCl₃): δ 1.65 (m), 0.90–1.13 (m).

trans-Decaline- d_{18} (Table 2, entry 6) : 85% (32.1 mg, 213 µmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.66 (m, 0.12H), 1.41 (m, 0.18H), 1.23 (m, 0.44H),

0.86 (m, 0.32H); ²H NMR (61 MHz, CHCl₃): δ 1.61 (brs), 1.49 (brs), 1.17 (brs), 0.87 (brs).

Adamantane-*d*₁₆ (Table 2, entry 7) : 99% (34.6 mg, 248 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 1.85 (m, 2.60H), 1.75 (brd, 7.20H); ²H NMR (61 MHz, CHCl₃): δ 1.81 (brs), 1.69 (brs).

α-Cholestane-*d*₄₈ (Table 2, entry 8^c) : 82% (38.1 mg, 112.5 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 0.63–1.95 (m, 33.84H); ²H NMR (61 MHz, CHCl₃): δ 0.92–1.16 (m).

α-Cholestane- d_{48} (Table 2, entry 8^d) : 90% (44.7 mg, 112.5 μmol) as a colorless oil, ¹H NMR (500 MHz, CDCl₃): δ 0.63–1.93 (m, 26.67H); ²H NMR (61 MHz, CHCl₃): δ 0.82–1.78 (m).

Cyclopentadecane- d_{30} (**Table 2, entry 9**) : 99% (59.7 mg, 248 µmol) as a colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 1.25 (s, 0.91H); ²H NMR (61 MHz, CHCl₃): δ 1.27 (brs).

4. ¹H and ²H NMR spectra of multi-deuterated alkanes

S 13

