Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

# **Supporting Information**

# Palladium-Catalyzed Synthesis of Aldehydes from Aryl Halides and *tert*-Butyl Isocyanide using Formate salts as a Hydride Donor

Ying Zhang,<sup>a</sup> Xiao Jiang,<sup>a</sup> Jin-Mei Wang,<sup>a</sup> Jing-Lei Chen,<sup>a</sup> and Yong-Ming Zhu,<sup>a,\*</sup>

<sup>a</sup> College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China Fax: (+86)-512-67166591; E-mail: zhuyongming@suda.edu.cn

| Table of contents:               | page |
|----------------------------------|------|
| 1. General information           | S2   |
| 2. Synthesis of compounds 2a-2ee | S2   |
| 5. References                    | S9   |
| 6. NMR Sprectra                  | S10  |

#### **General information:**

All reactants and reagents were purchased from commercial suppliers. All anhydrous solvents used in the reactions were dried and freshly distilled. TLC was performed on silica HSGF254 plates. Melting points were determined with a digital melting-point apparatus. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained at 400/101 or 600/125 MHz, respectively. NMR spectra were run in a solution of deuterated chloroform (CDCl<sub>3</sub>) or DMSO-*d*<sub>6</sub> and were reported in parts per million (ppm). LRMS analyses were carried out on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry.

#### Typical experimental procedure for reductive formylation reaction of aryl halides:

Into a 15 mL sealed tube was added aryl halides (0.7 mmol), *tert*-butyl isocyanide (0.84 mmol, 95  $\mu$ L), Pd(OAc)<sub>2</sub> (0.032 mmol, 7 mg), dppe (0.063 mmol, 25 mg), HCO<sub>2</sub>Na (1.4 mmol, 95 mg) and anhydrous DMSO (3.0 mL). The mixture was stirred at 120 °C under nitrogen. After completion of the reaction indicated by TLC, the mixture was extracted with Et<sub>2</sub>O (3×10 mL). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, and the filtrate was then concentrated under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether (30—60 °C)/Et<sub>2</sub>O as eluent to provide the pure desired product.

#### 4-Methylbenzaldehyde (2a):1



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 95% (80 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.96 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.1, 145.6, 134.2, 129.9, 129.8, 22.0. LRMS (ESI): *m*/*z* calcd for C<sub>8</sub>H<sub>8</sub>O [M + H]<sup>+</sup>, 121.1; found, 121.0.

#### 2-Methylbenzaldehyde (2b):1



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 65% (55 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.98 (s, 1H), 7.67 (d, *J* = 7.1 Hz, 2H), 7.45–7.38 (m, 2H), 2.43 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.6, 139.0, 136.5, 135.4, 130.1, 128.9, 127.3, 21.3. LRMS (ESI): *m/z* calcd for C<sub>8</sub>H<sub>8</sub>O [M + H]<sup>+</sup>, 121.1; found, 121.0.

#### 3,5-Dimethylbenzaldehyde (2c):<sup>2</sup>



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 84% (79 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.84 (s, 1H), 7.38 (s, 2H), 7.15 (s, 1H), 2.28 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.8, 138.8, 136.6, 136.2, 127.6, 21.1. LRMS (ESI): *m/z* calcd for C<sub>9</sub>H<sub>10</sub>O [M + H]<sup>+</sup>, 135.1; found, 134.9.

#### 4-tert-Butylbenzaldehyde (2d):3



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 90% (102 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.97 (s, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 1.34 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.1, 158.5, 134.2, 129.8, 126.1, 35.4, 31.1. LRMS (ESI): *m*/z calcd for C<sub>11</sub>H<sub>14</sub>O [M + H]<sup>+</sup>, 163.1; found, 163.0.

4-Methoxybenzaldehyde (2e):1



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 66% (63 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.78 (s, 1H), 7.74 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.8, 164.6, 132.0, 129.9, 114.3, 55.6. LRMS (ESI): *m*/*z* calcd for C<sub>8</sub>H<sub>8</sub>O<sub>2</sub> [M + H]<sup>+</sup>, 137.0; found, 136.9.

#### 3-Methoxybenzaldehyde (2f):1



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 61% (58 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.97 (s, 1H), 7.47–7.42 (m, 2H), 7.39 (s, 1H), 7.18 (d, *J*= 6.6 Hz, 1H), 3.86 (s, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.3, 160.2, 137.9, 130.1, 123.6, 121.6, 112.1, 55.6. LRMS (ESI): *m*/z calcd for C<sub>8</sub>H<sub>8</sub>O<sub>2</sub> [M + H]<sup>+</sup>, 137.2; found, 137.0.

#### 3,4,5-Trimethoxybenzaldehyde (2g):4



Prepared from corresponding aryl iodide for 6 h. White solid. Yield: 80% (93 mg). M.p 68- 70 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.88 (s, 1H), 7.14 (s, 2H), 3.94(s, 9H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  191.2, 153.7, 143.6, 131.8, 106.8, 61.1, 56.4. LRMS (ESI): *m/z* calcd for C<sub>10</sub>H<sub>12</sub>O<sub>4</sub> [M + H]<sup>+</sup>, 167.1; found, 167.1.

#### 4-Fluorobenzaldehyde (2h):5



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 85% (74 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.98 (s, 1H), 7.95–7.89 (m, 2H), 7.22 (t, *J* = 8.6 Hz, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  190.6 (s), 166.6 (d, *J* = 256.7 Hz), 133.1 (d, *J* = 2.7 Hz), 132.3 (d, *J* = 9.7 Hz), 116.4 (d, *J* = 22.3 Hz). LRMS (ESI):

#### 3,5-Difluorobenzaldehyde (2i):6



Prepared from corresponding aryl iodide for 6 h. Colorless oil. Yield: 55% (55 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.96 (s, 1H), 7.45–7.38 (dd, *J* = 6.9, 1.9 Hz, 2H), 7.10 (tt, *J* = 8.4, 2.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  189.5 (t, *J* = 2.5 Hz), 163.5 (dd, *J* = 252.5, 11.5 Hz), 139.29 (s), 112.3 (m), 109.9 (t, *J* = 25.5 Hz). LRMS (ESI): *m/z* calcd for C<sub>7</sub>H<sub>4</sub>F<sub>2</sub>O [M + H]<sup>+</sup>, 143.0; found, 143.0.

4-Chlorobenzaldehyde (2j):5



prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 70% (69 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.98 (s, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.0, 141.1, 134.8, 131.0, 129.6. LRMS (ESI): *m/z* calcd for C<sub>7</sub>H<sub>5</sub>ClO [M + H]<sup>+</sup>, 141.0; found, 141.0.

4-(Trifluoromethyl)benzaldehyde (2k):<sup>3</sup>



Prepared from corresponding aryl iodide for 3 h. Colorless oil. Yield: 73% (89 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.11 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 2H), 7.82 (d, *J* = 8.1 Hz, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  191.1 (s), 138.7 (d, *J* = 1.0 Hz), 135.6 (q, *J* = 32.7 Hz), 129.9 (s), 126.1 (q, *J* = 3.8 Hz), 123.5 (q, *J* = 272.9 Hz). LRMS (ESI): *m/z* calcd for C<sub>8</sub>H<sub>5</sub>F<sub>3</sub>O [M + H]<sup>+</sup>, 175.0; found, 175.0.

4-Acetylbenzaldehyde (2I):5



Prepared from corresponding aryl iodide for 24 h. Colorless oil. Yield: 64% (66 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.12 (s, 1H), 8.11 (d, *J* = 8.1 Hz, 2H), 7.99 (d, *J* = 8.4 Hz, 2H), 2.67 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 191.8, 141.3, 139.2, 130.0, 129.0, 27.1. LRMS (ESI): *m/z* calcd for C<sub>9</sub>H<sub>8</sub>O<sub>2</sub> [M + H]<sup>+</sup>, 149.1; found, 149.0.

4-Formylbenzonitrile (2m):1



Prepared from corresponding aryl iodide for 6 h. Colorless oil. Yield: 49% (45 mg). <sup>1</sup>H NMR (CDCl<sup>3</sup>, 400 MHz)  $\delta$  10.03 (s, 1H), 7.94 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.8, 138.8, 133.0, 129.9, 117.8, 117.6. LRMS (ESI): *m*/*z* calcd for C<sub>8</sub>H<sub>5</sub>NO [M + H]<sup>+</sup>, 132.0; found,132.0.

#### Biphenyl-4-carbaldehyde (2n):1



Prepared from corresponding aryl iodide for 6 h. White solid. Yield: 77% (98 mg). Mp. 55–56 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.00 (s, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.38 (t, *J* = 7.1 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 147.0, 139.6, 135.1, 130.2, 129.0, 128.5, 127.6, 127.3. LRMS (ESI): *m*/*z* calcd for C<sub>13</sub>H<sub>10</sub>O [M + H]<sup>+</sup>, 183.1; found, 183.0.

#### 4-(dimethylamino)benzaldehyde (2o):1



Prepared from corresponding aryl iodide for 6 h. White solid. Yield: 90% (94 mg). M.p 69–71 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.73 (s, 1H), 7.73 (d, *J* = 7.7 Hz, 2H), 6.69 (d, *J* = 7.5 Hz, 2H), 3.08 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.4, 154.4, 132.1, 125.3, 111.1, 40.2. LRMS (ESI): *m/z* calcd for C<sub>9</sub>H<sub>11</sub>NO [M + H]<sup>+</sup>, 150.1; found, 150.1.

#### 4-Hydroxymethylbenzaldehyde (2p):7



Prepared from corresponding aryl iodide for 6 h. Colorless oil. Yield: 94% (90 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.90 (s, 1H), 7.79 (d, *J* = 7.9 Hz, 2H), 7.47 (d, *J* = 7.9 Hz, 2H), 4.73 (s, 2H), 3.69 ((brs, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.52, 148.27, 135.32, 130.00, 126.92, 64.16. LRMS (ESI): *m/z* calcd for C<sub>8</sub>H<sub>8</sub>O<sub>2</sub> [M + H]<sup>+</sup>, 137.1; found, 137.1.

#### N-(4-formylphenyl)acetamide (2q):8



Prepared from corresponding aryl iodide for 6 h. Yellow solid. Yield: 82% (94 mg). M.p 155–157 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.91 (s, 1H), 8.07 (s, 1H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 2.23 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.3, 169.1, 143.8, 132.3, 131.3, 119.4, 24.9. LRMS (ESI): *m*/z calcd for C<sub>9</sub>H<sub>9</sub>NO<sub>2</sub> [M + H]<sup>+</sup>, 164.1; found, 164.0.

#### Ethyl-4-formylbenzoate (2r):1



Prepared from corresponding aryl iodide for 6 h. Colorless liquid. Yield: 91% (113 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.09 (s, 1H), 8.19 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.8, 165.6, 139.1, 135.5, 130.2, 129.6, 61.7, 14.3. LRMS (ESI): *m/z* calcd for C<sub>10</sub>H<sub>10</sub>O<sub>3</sub> [M + H]<sup>+</sup>, 179.1; found, 179.0.

#### 2,3-Dihydrobenzo[b][1,4]dioxine-6-carbaldehyde (2s):9



Prepared from corresponding aryl iodide for 3 h. White solid. Yield: 73% (84 mg). M.p 51–53 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.80 (s, 1H), 7.38 (d, *J* = 5.9 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 1H), 4.32 (d, *J* = 3.9 Hz, 2H), 4.28 (d, *J* = 4.4 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.8, 149.3, 143.9, 130.6, 124.2, 118.3, 117.8, 64.7, 64.0. LRMS (ESI): *m/z* calcd for C<sub>9</sub>H<sub>8</sub>O<sub>3</sub> [M + H]<sup>+</sup>, 165.1; found, 165.0.

1-Naphthaldehyde (2t):<sup>1</sup>



Prepared from corresponding aryl iodide for 3 h. Yellow oil. Yield: 80% (87 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.36 (s, 1H), 9.24 (d, *J* = 8.6 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 6.9 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.57 (q, *J* = 7.1 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.7, 136.8, 135.4, 133.8, 131.4, 130.6, 129.4, 128.6, 127.0, 124.9. LRMS (ESI): *m/z* calcd for C<sub>11</sub>H<sub>8</sub>O [M + H]<sup>+</sup>, 157.1; found, 157.0.

#### Thiophene-2-carbaldehyde (2u):1



Prepared from corresponding aryl iodide for 8 h. Yellow oil. Yield: 38% (30 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.95 (s, 1H), 7.80–7.77 (m, 2H), 7.22 (t, *J* = 4.3 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  183.1, 144.0, 136.5, 135.2, 128.4. LRMS (ESI): *m/z* calcd for C<sub>5</sub>H<sub>4</sub>OS [M + H]<sup>+</sup>, 113.0; found, 113.0.

Pyridine-3-carbaldehyde(2v):1



Prepared from corresponding aryl iodide for 3 h. Yellow oil. Yield: 69% (52 mg) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.14 (s, 1H), 9.11 (s, 1H), 8.87 (d, *J* = 4.6 Hz, 1H), 8.20 (dt, *J* = 7.9, 1.9 Hz, 1H), 7.52 (dd, *J* = 7.7, 5.0

Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 190.8, 154.7, 152.0, 135.9, 131.4, 124.2. LRMS (ESI): *m*/*z* calcd for C<sub>6</sub>H<sub>5</sub>NO [M + H]<sup>+</sup>, 108.0; found, 108.0.

#### Benzo[b]thiophene-3-carbaldehyde (2w):<sup>3</sup>



Prepared from corresponding aryl bromide for 30 h. Yellow solid. Yield: 57% (65 mg). M.p 49–50 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  10.13 (s, 1H), 8.68 (d, *J* = 7.7 Hz, 1H), 8.31 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.48 (dt, *J* = 22.8, 7.3 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  185.5, 143.4, 140.5, 136.5, 135.2, 126.2, 124.9, 122.5. LRMS (ESI): *m/z* calcd for C<sub>9</sub>H<sub>6</sub>OS [M + H]+, 163.0; found, 162.9.

1-Methyl-1H-indole-5-carbaldehyde (2x):10



Prepared from corresponding aryl iodide for 6 h. White solid. Yield: 36% (40 mg). M.p 79–81 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.03 (s, 1H), 8.15 (s, 1H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.40 (d, *J* = 8.6 Hz, 1H), 7.15 (d, *J* = 3.1 Hz, 1H), 6.65 (d, *J* = 3.0 Hz, 1H), 3.84 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  192.7, 140.1, 130.9, 129.4, 128.3, 126.6, 122.0, 109.9, 103.4, 33.3. LRMS (ESI): *m/z* calcd for C<sub>10</sub>H<sub>9</sub>NO [M + H]<sup>+</sup>, 160.1; found, 159.9.

Isoquinoline-6-carbaldehyde (2y):11



Prepared from corresponding aryl iodide for 3 h. Yellow solid. Yield: 87% (96 mg). M.p 73–75 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.37 (s, 1H), 9.31 (s, 1H), 8.96 (d, *J* = 6.0 Hz, 1H), 8.69 (d, *J* = 6.0 Hz, 1H), 8.20 (t, *J* = 8.2 Hz, 2H), 7.75 (dd, *J* = 8.0, 7.3 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.7, 153.0, 146.4, 140.0, 134.9, 133.4, 130.7, 128.8, 126.7, 117.9. LRMS (ESI): *m*/*z* calcd for C<sub>10</sub>H<sub>7</sub>NO [M + H]<sup>+</sup>, 158.1; found, 158.0.

#### Quinoline-2-carbaldehyde (2z):1



Prepared from corresponding aryl bromide for 30 h. Yellow solid. Yield: 68% (75 mg). M.p 69–71 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.23 (s, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.25 (d, *J* = 8.5 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.83 (dd, *J* = 8.3, 7.1 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.9, 152.7, 148.0, 137.5, 130.6, 130.5, 130.2, 129.3, 128.0, 117.5. LRMS (ESI): *m/z* calcd for C<sub>10</sub>H<sub>7</sub>NO [M + H]<sup>+</sup>, 158.1; found, 158.0.

#### Quinoline-3-carbaldehyde (2aa):1



Prepared from corresponding aryl bromide for 30 h. Yellow solid. Yield: 76% (84 mg). M.p 70–72 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.22 (s, 1H), 9.34 (s, 1H), 8.60 (s, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.86 (dd, *J* = 8.4, 7.0 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.8, 150.6, 149.2, 140.3, 132.8, 129.8, 129.5, 128.6, 128.0, 127.1. LRMS (ESI): *m/z* calcd for C<sub>10</sub>H<sub>7</sub>NO [M + H]<sup>+</sup>, 158.1; found, 158.0.

#### 2-Methylquinoline-6-carbaldehyde (2bb):<sup>13</sup>



Prepared from corresponding aryl bromide for 30 h. White solid. Yield: 87% (104 mg). M.p 73–75 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.10 (s, 1H), 8.23 (s, 1H), 8.12 (m, 2H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 2.74 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.5, 162.4, 150.6, 137.4, 133.7, 133.4, 129.9, 126.9, 125.9, 123.2, 25.72. LRMS (ESI): *m/z* calcd for C<sub>11</sub>H<sub>9</sub>NO [M + H]<sup>+</sup>, 172.1; found, 172.0.

Anthracene-9-carbaldehyde (2cc):14



Prepared from corresponding aryl bromide for 30 h. Yellow solid. Yield: 56% (81 mg). M.p 113–114 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  11.36 (s, 1H), 8.85 (d, *J* = 9.0 Hz, 2H), 8.47 (s, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.58 (t, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.9, 135.2, 132.0, 130.9, 129.3, 129.0, 125.6, 124.5,123.5. LRMS (ESI): *m/z* calcd for C<sub>11</sub>H<sub>9</sub>NO [M + H]<sup>+</sup>, 207.1; found, 206.9.

4-(1H-pyrrol-1-yl)benzaldehyde (2dd):15



Prepared from corresponding aryl iodide for 6 h. Brown solid. Yield: 92% (110 mg). M.p 92–94 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  9.98 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.19 (s, 2H), 6.41 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.9, 145.0, 133.3, 131.5, 119.7, 119.1, 112.0. LRMS (ESI): *m/z* calcd for C<sub>11</sub>H<sub>9</sub>NO [M + H]<sup>+</sup>, 172.1; found, 172.1.

#### 3-lodobenzaldehyde (2ee):16



Prepared from 1,3-diiodobenzene for 12 h. Yellow solid. Yield: 45% (73 mg). M.p 58–59 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.92 (s, 1H), 8.21 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.18 (m, 1H), 7.35 – 7.26 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  190.8, 143.3, 138.6, 138.1, 130.8, 129.0, 94.8.

- [1] T. Ueda, H. Konishi, K. Manabe, Angew. Chem. Int. Ed. 2013, 52, 8611.
- [2] a) I. Carelli, I. Chiarotto, S. Cacchi, P. Pace, C. Amatore, A. Jutand, G. Meyer, *Eur. J. Org. Chem.* 1999, 64, 1471.
- [3] H. Neumann, R. Kadyrov, X.-F. Wu, M. Beller, Chem. Asian J. 2012, 7, 2213.
- [4] J.-A. Jiang, J.-L. Dua, Z.-G. Wang, Z.-N. Zhang, X. Xua, G.-L. Zheng, Y.-F. Ji, *Tetrahedron Lett.* 2014, 55, 1677.
- [5] A. Wang and H. Jiang, J. Org. Chem. 2010, 75, 2321.
- [6] X. Wang, R. Liu, Y. Jin, X. Liang, Chem. Eur. J. 2008, 14, 2679.
- [7] Y-G. Zhao, S. Victor, Org. Lett. 2014, 16, 390.
- [8] Y. Mori, Yoshio Sakaguchi, Hisaharu Hayash. J. Phys. Chem. A 2002, 106, 4453.
- [9] C.-S. Huang, Y.-L. Li, Y.-L. Song, Y.-J. Li, H.-B. Liu, D.-B. Zhu, Adv. Mater. 2010, 22, 3532.
- [10] S. Dalgleish, J. G. Labram, Z. Li, J. Wang, C. R. McNeill, T. D. Anthopoulos, N. C. Greenham, N. Robertson, J. Mater. Chem. 2011, 21, 15422.
- [11] Q. Li, Keith W. Woods, G.-D. Zhu, John P. Fischer, J.-C. Gong et al., US0199511, 2003, Al.
- [12] V. Mamane , E. Aubert , and Y. Fort, J. Org. Chem. 2007, 72, 7294.
- [13] J.-Y. Li,C.-Y. Chen,W.-C. Ho, S.-H. Chen,and C.-G. Wu, Org. Lett. 2012, 14, 5420.
- [14] C. Shu, C.-B. Chen, W.-X. Chen and L.-W. Ye, Org. Lett. 2013, 15, 5542.
- [15] J. Nakazaki, I.-G. Chung, M. M. Matsushita, T. Sugawara, R. Watanabe, A. Izuokab, Y.Kawadab, J. Mater. Chem. 2003, 13, 1011.
- [16] L.F. Tietze, F. Behrendt, F. Major, B. Krewer, and J. M. v. Hof, Eur. J. Org. Chem. 2010, 36, 6909.

# Spectra data for NMR of aldehydes







<sup>1</sup>H NMR spectrum of compound **2c** 



<sup>13</sup>C NMR spectrum of compound **2c** 







30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)





# <sup>1</sup>H NMR spectrum of compound **2f**





<sup>1</sup>H NMR spectrum of compound 2g





- - 110 100 f1 (ppm)

# <sup>1</sup>H NMR spectrum of compound **2i**







| 5408<br>5159<br>4910 | 7682<br>5538<br>2585<br>1444 | [66] | 4260<br>3551<br>695<br>695<br>695<br>1018<br>3481<br>5947 | 776<br>596<br>414 |
|----------------------|------------------------------|------|-----------------------------------------------------------|-------------------|
| 888                  | 62.13                        | 39.1 | 12.1<br>12.1<br>10.1<br>09.5<br>09.5                      | 7.15<br>6.8       |
| 577                  | 1777                         | 7    |                                                           | 555               |







# <sup>1</sup>H NMR spectrum of compound **2k**











<sup>13</sup>C NMR spectrum of compound **2** 

|  | -1 <i>97.5</i> 501<br>-191.7481 | ∠141.3288<br>\130.1637<br>\129.9538<br>\128.9502 | 77.4780<br>77.1603<br>76.8425 | -27.1092 |
|--|---------------------------------|--------------------------------------------------|-------------------------------|----------|
|--|---------------------------------|--------------------------------------------------|-------------------------------|----------|





# <sup>1</sup>H NMR spectrum of compound **2m**





<sup>13</sup>C NMR spectrum of compound **2m** 

N









<sup>13</sup>C NMR spectrum of compound **2n** 







<sup>13</sup>C NMR spectrum of compound **2p** 





# <sup>1</sup>H NMR spectrum of compound **2r**











<sup>13</sup>C NMR spectrum of compound **2t** 







220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)





<sup>13</sup>C NMR spectrum of compound **2v** 



# <sup>1</sup>H NMR spectrum of compound **2w**



# <sup>13</sup>C NMR spectrum of compound **2w**



# <sup>1</sup>H NMR spectrum of compound **2x**









# <sup>1</sup>H NMR spectrum of compound 2z



<sup>13</sup>C NMR spectrum of compound **2z** 



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

# <sup>1</sup>H NMR spectrum of compound 2aa



# <sup>13</sup>C NMR spectrum of compound 2aa



# <sup>1</sup>H NMR spectrum of compound **2bb**



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

# <sup>1</sup>H NMR spectrum of compound **2cc**



# <sup>13</sup>C NMR spectrum of compound **2cc**



# <sup>1</sup>H NMR spectrum of compound **2dd**





# <sup>13</sup>C NMR spectrum of compound **2dd**



# <sup>1</sup>H NMR spectrum of compound **2ee**



# <sup>13</sup>C NMR spectrum of compound **2ee**





