Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

for the manuscript entitled

Transition metal induced switch of fluorescence and absorption responses of Zn(II)porphyrin-DNA conjugate to cysteine derivatives

Jung Kyu Choi, Gevorg Sargsyan, Breiana D. Johnson, Milan Balaz*

University of Wyoming, Department of Chemistry, Laramie, WY 82071, USA

E-mail: mbalaz@uwyo.edu

ESI: Table of Contents

		page
Figure S1:	UV-vis absorption and emission spectra of ZnPorT8 titrated with Cys	S3
Figure S2:	UV-vis absorption and emission spectra of ZnPorT8 titrated with GSH	S3
Figure S3:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (3.0 μ M Hg ²⁺) titrated with Cys	S4
Figure S4:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (4.0 μ M Hg ²⁺) titrated with Cys	S4
Figure S5:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (5.0 μ M Hg ²⁺) titrated with L-Cys	S5
Figure S6:	<i>UV-vis absorption and emission spectra of</i> ZnPorT8 /Hg ²⁺ complex (5.0 μ M Hg ²⁺) <i>titrated with D-Cys</i>	S5
Figure S7:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (5.0 μ M Hg ²⁺) titrated with GSH	S6
Figure S8:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (5.0 μ M Hg ²⁺) titrated with Ala	S6
Figure S9:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (5.0 μ M Hg ²⁺) titrated with Arg	S7
Figure S10:	UV-vis absorption and emission spectra of $\mathbf{ZnPorT8}/\mathrm{Hg}^{2+}$ complex (5.0 μ M Hg ²⁺) titrated with Asn	S7
Figure S11:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Gln	S8
Figure S12:	UV-vis absorption and emission spectra of ZnPorT8 /Hg ²⁺ complex (5.0 μ M Hg ²⁺) titrated with Glu	S8
Figure S13:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Gly	S9
Figure S14:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with His	S9
Figure S15:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Ile	S10
Figure S16:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Leu	S10
Figure S17:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Lys	S11
Figure S18:	<i>UV-vis absorption and emission spectra of</i> $\mathbf{ZnPorT8/Hg}^{2+}$ complex (5.0 μ M Hg ²⁺) <i>titrated with Met</i>	S11
Figure S19:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Pro	S12
Figure S20:	<i>UV-vis absorption and emission spectra of</i> $ZnPorT8/Hg^{2+}$ complex (5.0 μ M Hg ²⁺) <i>titrated with Phe</i>	S12
Figure S21:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Ser	S13
Figure S22:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Thr	S13
Figure S23:	<i>UV-vis absorption and emission spectra of</i> ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) <i>titrated with Tyr</i>	S14
Figure S24:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Trp	S14
Figure S25:	UV-vis absorption and emission spectra of ZnPorT8/ Hg^{2+} complex (5.0 μ M Hg^{2+}) titrated with Val	S15
Figure S26:	UV-vis absorption and emission spectra of ZnPorT8 /Cu ²⁺ complex (20.0 μ M Cu ²⁺) titrated with Cys	S15
Figure S27:	UV-vis absorption and emission spectra of ZnPorT8 /Cu ²⁺ complex (20.0 μ M Cu ²⁺) titrated with GSH	S16
Figure S28:	UV-vis absorption changes of ZnPorT8 /Cu ²⁺ complex (20.0 μ M Cu ²⁺) vs. conc. of GSH	S17
Figure S29:	UV-vis absorption changes of ZnPorT8 /Hg ²⁺ complex (5.0 μ M Cu ²⁺) vs. conc. of GSH	S17
Figure S30:	Changes of fluorescence intensity of the ZnPorT8/Hg2+ systems at 654.0 nm as a function of the L-Cys	5
	concentration for different Hg2+ concentrations	S17
Figure S31	Competitive sensing: UV-vis absorption and emission spectra of ZnPorT8/Hg ²⁺ complex	
	$(5.0 \ \mu M \ Hg^{2+})$ titrated with a mixture of amino acids	S18
Table S1.	Relative fluorescence quantum yields.	S18

Figure S1. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8** (2 μ M) upon stepwise addition of the cysteine (Cys) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S2. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8** (2 μ M) upon stepwise addition of the glutathione (GSH) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S3. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 3.0 μ M of Hg²⁺ ion) upon stepwise addition of the cysteine (Cys) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S4. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 4.0 μ M of Hg²⁺ ion) upon stepwise addition of the cysteine (Cys) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S5. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the L-cysteine (L-Cys) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S6. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the D-cysteine (D-Cys) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S7. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the Glutathione (GSH) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S8. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the alanine (Ala) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S9. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the arginine (Arg) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S10. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the aspartic acid (Asn) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S11. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the glutamic acid (Gln) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S12. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the glutamine (Glu) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S13. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the glycine (Gly) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S14. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the Histidine (His) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S15. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the iso-leucine (Ile) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S16. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the leucine (Leu) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S17. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the lysine (Lys) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S18. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the methionine (Met) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S19. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the proline (Pro) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S20. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the phenylalanine (Phe) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S21. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the serine (Ser) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S22. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the threonine (Thr) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S23. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the tyrosine (Tyr) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S24. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the tryptophan (Trp) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S25. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Hg²⁺ complex (2.0 μ M of **ZnPorT8** and 5.0 μ M of Hg²⁺ ion) upon stepwise addition of the value (Val) from 5 to 30 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S26. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Cu²⁺ complex (2.0 μ M of **ZnPorT8** and 20.0 μ M of Cu²⁺ ion) upon stepwise addition of the cysteine (Cys) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S27. UV-vis absorption (left) and emission (right) spectra of the **ZnPorT8**/Cu²⁺ complex (2.0 μ M of **ZnPorT8** and 20.0 μ M of Cu²⁺ ion) upon stepwise addition of the Glutathione (GSH) from 1 to 10 μ M in Na-cacodylate buffer (1 mM, pH = 7.0, 20 °C).

Figure S28. UV-vis absorption changes of the **ZnPorT8**/Cu²⁺ complex at 425.0 nm as a function of the GSH concentration (A-A₀, A₀: absorbance of **ZnPorT8**/Cu²⁺, A: absorbance of **ZnPorT8**/Cu²⁺ after addition of GSH).

Figure S29. UV-vis absorption changes of the **ZnPorT8**/Hg²⁺ complex at 425.0 nm as a function of the GSH concentration (A-A₀, A₀: absorbance of **ZnPorT8**/Hg²⁺, A: absorbance of **ZnPorT8**/Hg²⁺ after addition of GSH).

Figure S30. (a) Changes of fluorescence intensity of the **ZnPorT8**/Hg²⁺ systems ([**ZnPorT8**] = 2.0 μ M, [Hg²⁺] = 2.0 μ M: blue line, 3.0 μ M: green line, 4.0 μ M: black line, 5.0 μ M: red line, and 6.0 μ M: orange line) at 654.0 nm as a function of the L-Cys concentration (0 to 10.0 μ M in 1.0 μ M addition steps). (b) Fluorescence intensity changes of the **ZnPorT8**/Hg²⁺ systems as a function of the L-Cys concentration (0 to 5.0 μ M) detected at 654.0 nm and their linear fits (colored lines, F-F₀, F₀: fluorescence intensity of **ZnPorT8**/Hg²⁺, F: fluorescence intensity **ZnPorT8**/Hg²⁺ after addition of L-Cys).

Figure S31. a) UV/Vis absorption and b) emission ($\lambda_{exc} = 425$ nm) spectra of the **ZnPorT8**/Hg²⁺ complex (black curve, [**ZnPorT8**] = 2.0 μ M, [Hg²⁺] = 5.0 μ M) in the presence of an amino acid mixture (Ala, Lys, Met, Pro and Trp; each 5.0 μ M) with 5.0 μ M L-Cys (red curve) and without L-Cys (green dashed curve).

Table	<i>S1</i> .	Relative	fluorescence	quantum	yields	of	ZnPorT8,	ZnPorT8/Hg(II),	and
ZnPor	·T8 /C	Cu(II).							

system	[ZnPorT8]	[M(II)]	ΦF_{rel}
ZnPorT8	2 µM		1.0
ZnPorT8/Hg(II)	2 µM	5 μΜ	0.06
ZnPorT8/Cu(II)	2 µM	5 μΜ	0.87
ZnPorT8/Cu(II)	2 µM	20 µM	0.59