Supporting Information

Chiral, fluorescent microparticles constructed by optically active helical substituted polyacetylene: preparation and enantioselective recognition ability

Huajun Huang,1,2 Wantai Yang,1,2 Jianping Deng1,2*

1State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Figure S1. NMR spectra of monomer. A, 1H NMR (measured in DMSO-d6 at room temperature); B, 13C NMR (measured in CDCl3 at room temperature).

1H NMR (400 MHz, DMSO-d6): δ8.89 (d, 1H, Ar–H), 8.37 (d, 1H, Ar–H), 8.27–7.97 (m, 2H, Ar–H), 7.88–7.47 (m, 2H, Ar–H), 5.50–4.06 (s, 1H, N–H), 4.02–3.48 (m, 2H, CH2N), 3.35–2.99 (m, 6H, N(CH3)2), 2.92 (s, 1H, HC≡C), 2.74 (t, 1H, HC), 1.37–0.92 (ddt, 3H, CH3).

13C NMR (100 MHz, CDCl3): δ170.9, 133.8, 130.9, 129.9, 129.1, 128.8, 123.3, 118.4, 115.5, 79.0, 71.5, 52.9, 45.8, 29.1, 18.9, 8.6.
Figure S2. SEM image of D-CFMPs prepared in the solvent mixture of CHCl₃/ n-heptane: 3/5 (in ml).

Figure S3. Typical ¹H NMR (A) and ¹³C NMR (B) spectra of the chiral fluorescent substituted polyacetylene microparticles (measured in CDCl₃ at room temperature). A new sharp signal of Ha appeared around 6.5 ppm (¹H NMR). According to the ratio of this signal’s intensity to that of Hb, the cis content of the polymer chains constructing the chiral fluorescent substituted polyacetylene was almost 100%.

¹³C NMR (100 MHz, CDCl₃): δ92.4, 92.2, 91.8, 77.3, 77.0, 76.7, 76.5, 76.2, 71.9, 71.6, 71.3, 69.1, 68.7, 68.4, 62.9, 62.5, 62.2, 45.9, 45.4, 40.4, 8.6, 8.1.

Elemental analysis: Anal. Calcd for C₁₈H₂₁N₃O₃S: C, 60.15; H, 5.89; N, 11.69; S, 8.92. Found: C, 60.06; H, 5.86; N, 11.73; S, 8.95.
Figure S4. TGA curve of the chiral fluorescent microparticles (at a rate of 10 °C /min in N\textsubscript{2}). The polymer chain began to disintegrate at about 160 °C. Approx. 16 wt% of the original mass remained up to 1000 °C.

Figure S5. DSC thermogram of the chiral fluorescent microparticles measured at a heating rate of 10 °C /min from 40 to 200 °C in N\textsubscript{2}. Tg is determined around 90 °C.

Figure S6. CD (A) and UV-vis (B) spectra of L-CFMPs dispersed in water with different ratio of L-alanine/D-alanine: 0/5; 1/4; 2/3; 2.5/2.5; 3/2; 4/1; 5/0; 0/0 (mol/mol). The variation of the change in spectra are considered being due to experimental error.
Figure S7. CD (A) and UV-vis (B) spectra of D-CFMPs dispersed in water with different ratio of L-/D-alanine: 0/5; 1/4; 2/3; 2.5/2.5; 3/2; 4/1; 5/0; 0/0 (mol/mol).

Figure S8. CD (A,C) and UV-vis (B,D) spectra of L-CFMPs dissolved in CHCl$_3$ with different amount of R-PEA and S-PEA: 0; 0.25; 0.5; 0.75; and 1 ml. The CD and UV spectra of R-PEA and S-PEA were measured qualitatively in CHCl$_3$ to illustrate that the CD signal at around 280 nm was caused by R(S)-PEA.
Figure S9. CD (A,C) and UV-vis (B,D) spectra of D-CFMPs dissolved in CHCl₃ with different amount of R-PEA and S-PEA: 0; 0.25; 0.5; 0.75; and 1 ml. The CD and UV spectra of R-PEA and S-PEA were measured qualitatively in CHCl₃ to illustrate that the CD signal at around 280 nm was caused by R(S)-PEA.

Figure S10. Fluorescence emission spectra of chiral fluorescent microparticles (D-CFMPs) dissolved in CHCl₃ with different amount of R-PEA and S-PEA: 0; 0.25; 0.5; 0.75; and 1 ml.