Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Synthesis of fluorovinyl aryl ethers by a three-component reaction of *gem*-difluoroalkenes with arylboronic acids and oxygen

Mingjin Wang, Fang Liang, Yang Xiong and Song Cao*

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China *Corresponding author: Tel: +86-21-64253452; fax: +86-21-64252603, E-mail address: scao@ecust.edu.cn

Table of contents

General experimental procedures	P2
Preparation of 1,1-difluoroalkenes 1a–g and 1-aryl-2,2-difluoroethenes 1h–k	P2
General procedure for the synthesis of 3aa–df and 3ha–kl	P2
General procedure for the synthesis of 3ea–ga	P2
Spectral and analytical data of compounds 3	P2
References	P2
¹ H, ¹³ C, ¹⁹ F NMR and HRMS (EI) spectra of compounds 3	Р9

General experimental procedures

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. NMP and other solvents were dried by standard method prior to use. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C NMR, respectively) using TMS as internal standard. The ¹⁹F NMR spectra were obtained using a 400 spectrometer (376 MHz). CDCl₃ was used as the NMR solvent in all cases. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

Preparation of 1,1-difluoroalkenes 1a-g and 1-aryl-2,2-difluoroethenes 1h-k

The 1,1-difluoroalkenes (1a-g) were prepared according to the Hu's reported procedure.¹ The 1-aryl-2,2difluoroethenes (1h-k) was prepared according to the reported procedure.²

General procedure for the synthesis of 3aa-df and 3ha-kl

To a solution of *gem*-difluoroalkenes (**1a**–d, **1h**–k, 1.0 mmol) in NMP (2 mL) was added arylboronic acids (2.0 mmol) and K_3PO_4 (2.0 mmol, 424 mg) at room temperature. The mixture was stirred at 100 °C for 24 h under air atmosphere (monitored by TLC). After the completion of reaction, the reaction mixture was quenched with water (5 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layer was washed with water and brine, then dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using *n*-hexane/EtOAc (100/1) as eluent to afford the pure target compounds **3aa–df** and **3ha–kl**.

General procedure for the synthesis of 3ea-ga

To a solution of *gem*-difluoroalkenes (1e–g, 1.0 mmol) in toluene (2 mL) was added phenylboronic acid 2a (2.0 mmol), Cs_2CO_3 (2.0 mmol, 652 mg), and Ni(acac)₂ (0.05 mmol, 13 mg) at room temperature. The mixture was stirred at 100 °C for 24 h under an oxygen atmosphere (balloon). After the completion of reaction, the reaction mixture was quenched with water (5 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layer was washed with water and brine, then dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using *n*-hexane/EtOAc (100/1) as eluent to afford the pure target compounds **3ea–ga**.

References

M. Hu, Z. He, B. Gao, L. Li, C. Ni and J. Hu, J. Am. Chem. Soc., 2013, 135, 17302.
C. S. Thomoson, H. Martinez, W. R. Dolbier Jr., J. Fluorine Chem., 2013, 150, 53.

Spectral and analytical data of compounds 3

(2-Fluoro-2-phenoxyethene-1,1-diyl)dibenzene (3aa): White solid. Yield: 81%, mp 77.9–79.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.19 (m, 12H), 7.11–7.08 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 154.9 (d, ³*J*_{CF} = 2.7 Hz), 151.0 (d, ¹*J*_{CF} = 286.8 Hz), 136.3 (d, ³*J*_{CF} = 4.1 Hz), 136.2 (d, ⁴*J*_{CF} = 3.7 Hz), 129.9 (d, ³*J*_{CF} = 4.0 Hz), 129.8, 129.6 (d, ⁴*J*_{CF} = 3.2 Hz), 128.3, 128.2, 127.3, 127.2, 124.1, 116.5, 106.1 (d, ²*J*_{CF} = 25.0 Hz) ppm; ¹⁹F NMR (376M Hz, CDCl₃) δ –87.1 (s, 1F) ppm; HRMS (EI): calcd for C₂₀H₁₅FO [M]⁺: 290.1107, found: 290.1108.

(2-Fluoro-2-(*p*-tolyloxy)ethene-1,1-diyl)dibenzene (3ab): White solid. Yield: 69%, mp 70.8–72.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.21 (m, 10H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 7.6 Hz, 2H), 2.29 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.8 (d, ³*J*_{CF} = 2.5 Hz), 151.2 (d, ¹*J*_{CF} = 286.9 Hz), 136.4 (d, ³*J*_{CF} = 4.2 Hz), 136.3 (d, ⁴*J*_{CF} = 3.8 Hz), 133.6, 130.3, 130.0 (d, ³*J*_{CF} = 4.0 Hz), 129.6 (d, ⁴*J*_{CF} = 3.2 Hz), 128.3, 128.2, 127.3, 127.2, 116.4, 105.7 (d, ²*J*_{CF} = 25.3 Hz), 20.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –87.0 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₇FO [M]⁺: 304.1263, found: 304.1262.

(2-Fluoro-2-(*o*-tolyloxy)ethene-1,1-diyl)dibenzene (3ac): White solid. Yield: 73%, mp 68.8–70.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.17 (m, 10H), 7.15–7.10 (m, 3H), 7.01–6.97 (m, 1H), 2.20 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 153.2 (d, ³*J*_{CF} = 2.3 Hz), 151.3 (d, ¹*J*_{CF} = 286.4 Hz), 136.4 (d, ³*J*_{CF} = 4.1 Hz), 136.3 (d, ⁴*J*_{CF} = 3.6 Hz), 131.5, 130.0 (d, ³*J*_{CF} = 4.0 Hz), 129.6 (d, ⁴*J*_{CF} = 3.1 Hz), 128.3, 128.2, 127.5, 127.3, 127.1, 127.0, 124.0, 115.0, 105.5 (d, ²*J*_{CF} = 25.3 Hz), 16.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –85.9 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₇FO [M]⁺: 304.1263, found: 304.1262.

(2-Fluoro-2-(4-methoxyphenoxy)ethene-1,1-diyl)dibenzene (3ad): White solid. Yield: 65%, mp 67.6–69.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.21 (m, 10H), 7.03–7.01 (m, 2H), 6.85–6.81 (m, 2H), 3.73 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 151.5 (d, ¹*J*_{CF} = 286.9 Hz), 148.6 (d, ³*J*_{CF} = 2.3 Hz), 136.4 (d, ³*J*_{CF} = 4.1 Hz), 136.3 (d, ⁴*J*_{CF} = 3.7 Hz), 130.0 (d, ³*J*_{CF} = 4.0 Hz), 129.7 (d, ⁴*J*_{CF} = 3.2 Hz), 128.3, 128.2, 127.2, 127.1, 117.7, 114.9, 105.3 (d, ²*J*_{CF} = 25.5 Hz), 55.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –87.0 ppm; HRMS (EI): calcd for C₂₁H₁₇FO₂ [M]⁺: 320.1213, found: 320.1214.

(2-(4-Chlorophenoxy)-2-fluoroethene-1,1-diyl)dibenzene (3ae): White solid. Yield: 76%, mp 67.4–68.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.33 (m, 4H), 7.27–7.19 (m, 8H), 7.03–7.00 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 153.5 (d, ³*J*_{CF} = 2.8 Hz), 150.7 (d, ¹*J*_{CF} = 287.2 Hz), 136.0 (d, ³*J*_{CF} = 4.0 Hz), 135.8 (d, ³*J*_{CF} = 3.9 Hz), 129.9, 129.8, 129.6 (d, ⁴*J*_{CF} = 3.1 Hz), 129.3, 128.4, 128.3, 127.5, 127.4, 117.8, 106.5 (d, ²*J*_{CF} = 24.4 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –88.0 (s, 1F) ppm; HRMS (EI): calcd for C₂₀H₁₄ClFO [M]⁺: 324.0717, found: 324.0722.

(2-Fluoro-2-(4-fluorophenoxy)ethene-1,1-diyl)dibenzene (3af): White solid. Yield: 78%, mp 93.8–94.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.32 (m, 4H), 7.30–7.23 (m, 6H), 7.07–6.98 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (d, ¹*J*_{CF} = 240.8 Hz), 151.0 (d, ¹*J*_{CF} = 286.9 Hz), 150.8–150.7 (m), 136.1 (d, ³*J*_{CF} = 4.0 Hz), 135.9 (d, ⁴*J*_{CF} = 3.8 Hz), 129.8 (d, ³*J*_{CF} = 4.1 Hz), 129.6 (d, ⁴*J*_{CF} = 3.2 Hz), 128.3, 128.2, 127.4, 127.3, 117.9 (d, ³*J*_{CF} = 8.0 Hz), 116.3 (d, ²*J*_{CF} = 23.5 Hz), 106.0 (d, ²*J*_{CF} = 24.7 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –87.8 (s, 1F), – 119.2 to –119.3 (m, 1F) ppm; HRMS (EI): calcd for C₂₀H₁₄F₂O [M]⁺: 308.1013, found: 308.1014.

(2-Fluoro-2-(4-(trifluoromethyl)phenoxy)ethene-1,1-diyl)dibenzene (3ag): Colorless liquid. Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.8 Hz, 2H), 7.37–7.34 (m, 4H), 7.33–7.17 (m, 8H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 150.2 (d, ¹ J_{CF} = 287.3 Hz), 135.7 (d, ³ J_{CF} = 3.9 Hz), 135.6 (d, ⁴ J_{CF} = 3.8 Hz), 129.8 (d, ³ J_{CF} = 4.2 Hz), 129.5 (d, ⁴ J_{CF} = 3.1 Hz), 128.4, 128.3, 127.6, 127.5, 127.3 (q, ³ J_{CF} = 3.7 Hz), 126.3 (q, ² J_{CF} = 32.8 Hz), 124.0 (q, ¹ J_{CF} = 269.9 Hz), 116.5, 107.2 (d, ² J_{CF} = 23.7 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –61.9 (s, 3F), – 88.6 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₄F₄O [M]⁺: 358.0981, found: 358.0986.

4-((1-Fluoro-2,2-diphenylvinyl)oxy)benzaldehyde (3ah): Colorless oil. Yield: 88%. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.36–7.20 (m, 12H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 159.5 (d, ³*J*_{CF} = 3.3 Hz), 150.1 (d, ¹*J*_{CF} = 287.3 Hz), 135.7 (d, ⁴*J*_{CF} = 3.8 Hz), 135.6 (d, ³*J*_{CF} = 3.9 Hz), 132.7, 132.0, 129.8 (d, ³*J*_{CF} = 4.4 Hz), 129.5 (d, ⁴*J*_{CF} = 3.2 Hz), 128.4, 128.3, 127.7, 127.6, 116.7, 107.5 (d, ²*J*_{CF} = 23.4 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –88.2 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₅FO₂ [M]⁺: 318.1056, found: 318.1055.

3-((1-Fluoro-2,2-diphenylvinyl)oxy)pyridine (3ai): Yellow oil. Yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 2.4 Hz, 1H), 8.37–8.36 (m, 1H), 7.41–7.21 (m, 12H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 151.5 (d, ³ $J_{CF} = 2.8$ Hz), 150.6 (d, ¹ $J_{CF} = 287.6$ Hz), 145.4, 139.4 (d, ⁴ $J_{CF} = 0.9$ Hz), 135.7 (d, ³ $J_{CF} = 3.9$ Hz), 135.6 (d, ³ $J_{CF} = 3.9$ Hz), 129.8, 129.7, 129.6 (d, ⁴ $J_{CF} = 3.2$ Hz), 128.4, 128.3, 127.6, 124.2, 123.6, 106.8 (d, ² $J_{CF} = 23.6$ Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –88.6 ppm; HRMS (EI): calcd for C₁₉H₁₄FNO [M]⁺: 291.1059, found: 291.1058.

4-((1-Fluoro-2,2-diphenylvinyl)oxy)pyridine (3aj): White solid. Yield: 91%, mp 144.6–146.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.27 (m, 10H), 7.05–7.03 (m, 2H), 6.27–6.23 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 146.3 (d, ¹*J*_{CF} = 269.3 Hz), 138.5 (d, ³*J*_{CF} = 1.7 Hz), 134.9 (d, ³*J*_{CF} = 3.8 Hz), 134.8 (d, ⁴*J*_{CF} = 3.2 Hz), 129.7 (d, ³*J*_{CF} = 4.5 Hz), 129.5 (d, ⁴*J*_{CF} = 3.2 Hz), 129.1, 128.7, 128.6, 128.5, 118.8, 117.4 (d, ²*J*_{CF} = 20.5 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –95.0 (s, 1F) ppm; HRMS (EI): calcd for C₁₉H₁₄FNO [M]⁺: 291.1059, found: 291.1060.

3-((1-Fluoro-2,2-diphenylvinyl)oxy)thiophene (3ak): Colorless oil. Yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.23 (m, 10H), 7.18 (dd, J = 5.2, 3.2 Hz, 1H), 6.85–6.83 (m, 1H), 6.74–6,72 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 152.0 (d, ¹ $J_{CF} = 287.9$ Hz), 151.7 (d, ³ $J_{CF} = 2.3$ Hz), 136.2 (d, ³ $J_{CF} = 4.0$ Hz), 136.0 (d, ³ $J_{CF} = 3.8$ Hz), 129.9 (d, ⁴ $J_{CF} = 4.1$ Hz), 129.7 (d, ⁴ $J_{CF} = 3.2$ Hz), 128.3, 128.2, 127.3, 127.2, 125.4, 119.0 (d, ⁴ $J_{CF} = 0.5$ Hz), 105.4 (d, ⁴ $J_{CF} = 1.5$ Hz), 104.7 (d, ² $J_{CF} = 24.7$ Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –88.3 ppm; HRMS (EI): calcd for C₁₈H₁₃FOS [M]⁺: 296.0671, found: 296.0674.

3,3'-(2-Fluoro-2-(*p***-tolyloxy)ethene-1,1-diyl)bis(fluorobenzene) (3bb)**: Yellow solid. Yield: 75%, mp 80.4–81.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.27 (m, 1H), 7.24–7.19 (m, 1H), 7.13–6.90 (m, 10H), 2.30(s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, ¹*J*_{CF} = 244.2 Hz), 162.6 (d, ¹*J*_{CF} = 244.1 Hz), 152.2 (d, ³*J*_{CF} = 2.2 Hz), 151.8 (d, ¹*J*_{CF} = 289.0 Hz), 138.0 (dd, ³*J*_{CF} = 8.1 Hz, ³*J*_{CF} = 4.3 Hz), 137.8 (dd, ³*J*_{CF} = 8.0 Hz, ³*J*_{CF} = 3.8 Hz), 134.1, 130.4, 129.8 (d, ³*J*_{CF} = 8.2 Hz), 129.7 (d, ³*J*_{CF} = 8.1 Hz), 125.6 (dd, ⁴*J*_{CF} = 4.0 Hz, ⁴*J*_{CF} = 3.6 Hz), 125.3–125.2 (m), 116.8 (dd, ²*J*_{CF} = 21.0 Hz), 103.9–103.6 (m), 20.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –84.1 (s, 1F), –113.0 to –113.1 (m, 2F) ppm; HRMS(EI): calcd for C₂₁H₁₅F₃O [M]+: 340.1075, found: 340.1076.

4,4'-(2-Fluoro-2-(4-methoxyphenoxy)ethene-1,1-diyl)bis(fluorobenzene) (**3cd**): Yellow solid. Yield: 76%, mp 79.6–81.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.21 (m, 4H), 7.05–6.94 (m, 6H), 6.87–6.82 (m, 2H), 3.76 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, ¹*J*_{CF} = 245.5 Hz), 156.3, 151.5 (d, ¹*J*_{CF} = 286.7 Hz), 148.4 (d, ³*J*_{CF} = 2.3 Hz), 132.2–132.1 (m), 132.0–131.9 (m), 131.5 (dd, ³*J*_{CF} = 8.0 Hz, ⁴*J*_{CF} = 3.9 Hz), 131.2 (dd, ³*J*_{CF} = 7.9 Hz, ⁴*J*_{CF} = 3.2 Hz), 117.7, 115.3 (d, ²*J*_{CF} = 21.4 Hz), 115.2 (d, ²*J*_{CF} = 21.3 Hz), 114.9, 103.4 (d, ²*J*_{CF} = 26.3 Hz), 55.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –87.0 (s, 1F), –114.4 to –114.5 (m, 1F), –114.6 to –114.7 (m, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₅F₃O₂ [M]⁺:356.1024, found: 356.1025.

4,4'-(2-Fluoro-2-(4-fluorophenoxy)ethene-1,1-diyl)bis(methylbenzene) (3df): Colorless liquid. Yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.22 (m, 2H), 7.14 (d, *J* = 8.4 Hz, 4H), 7.06–7.00 (m, 4H), 6.98–6.94 (m, 2H), 2.34 (s, 3H), 2.28 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (d, ¹*J*_{CF} = 240.7 Hz), 150.8 (d, ¹*J*_{CF} = 285.9 Hz), 151.0–150.9 (m), 137.1, 137.0, 133.4 (d, ³*J*_{CF} = 4.0 Hz), 133.2 (d, ⁴*J*_{CF} = 3.8 Hz), 129.8 (d, ³*J*_{CF} = 4.1 Hz), 129.5 (d, ⁴*J*_{CF} = 3.2 Hz), 129.0, 128.9, 117.9 (d, ³*J*_{CF} = 8.1 Hz), 116.4 (d, ²*J*_{CF} = 23.5 Hz), 105.9 (d, ²*J*_{CF} = 24.7 Hz), 21.3, 21.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –88.7 (s, 1F), –119.3 to –119.4 (m, 1F) ppm; HRMS (EI): calcd for C₂₂H₁₈F₂O [M]⁺: 336.1326, found: 336.1327.

4,4'-(2-Fluoro-2-phenoxyethene-1,1-diyl)bis(chlorobenzene) (3ea): Colorless liquid. Yield: 57%. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.30 (m, 4H), 7.26–7.16 (m, 6H), 7.14–7.06 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 154.5 (d, ³*J*_{CF} = 2.5 Hz), 151.2 (d, ¹*J*_{CF} = 288.4 Hz), 134.3 (d, ³*J*_{CF} = 4.1 Hz), 134.2 (d, ⁴*J*_{CF} = 4.0 Hz), 133.4, 133.3, 131.2 (d, ³*J*_{CF} = 4.2 Hz), 130.9 (d, ⁴*J*_{CF} = 3.2 Hz), 130.0, 128.6, 128.5, 124.4, 116.5, 104.1 (d, ²*J*_{CF} = 25.7 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –85.5 (s, 1F) ppm; HRMS (EI): calcd for C₂₀H₁₃Cl₂FO [M]⁺: 358.0327, found: 358.0326.

4,4'-(2-Fluoro-2-phenoxyethene-1,1-diyl)bis(bromobenzene) (3fa): White solid. Yield: 47%, mp 96.8–98.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 2H), 7.40–7.31 (m, 4H), 7.23–7.06 (m, 7H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 154.4 (d, ³*J*_{CF} = 2.4 Hz), 151.1 (d, ¹*J*_{CF} = 288.7 Hz), 134.7 (d, ³*J*_{CF} = 4.2 Hz), 134.5 (d, ⁴*J*_{CF} = 3.8 Hz), 131.6 (d, ³*J*_{CF} = 6.3 Hz), 131.5 (d, ⁴*J*_{CF} = 4.1 Hz), 131.2, 131.1, 130.0, 124.4, 121.6, 121.5, 116.5, 104.2 (d, ²*J*_{CF} = 25.8 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –85.3 (s, 1F) ppm; HRMS (EI): calcd for C₂₀H₁₃Br₂FO [M]⁺: 447.9297, found: 447.9304.

9-(Fluoro(phenoxy)methylene)-9*H***-fluorene (3ga)**: Yellow solid. Yield: 73%, mp 76.9–78.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.85 (m, 1H), 7.80–7.76 (m, 3H), 7.40–7.31 (m, 5H), 7.23–7.17 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 153.7 (d, ³*J*_{CF} = 2.0 Hz), 152.4 (d, ¹*J*_{CF} = 299.6 Hz), 139.1, 138.8, 135.3 (d, ³*J*_{CF} = 7.6 Hz), 135.2 (d, ³*J*_{CF} = 6.5 Hz), 130.1, 127.4, 127.3, 127.3, 127.2, 125.1, 124.3, 124.2, 123.6, 120.0, 117.4, 103.1 (d, ²*J*_{CF} = 25.9 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –72.9 (s, 1F) ppm; HRMS (EI): calcd for C₂₀H₁₃FO [M]⁺: 288.0950, found: 288.0949.

(*E*/*Z*)-(4-(2-Fluoro-2-phenoxyvinyl)phenyl)(methyl)sulfane (3ha): Colorless liquid. Yield: 86%. A mixture of *E*- and *Z*-isomers (47:53, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.31 (m, 4H, both *E*- and *Z*-isomer), 7.21–7.12 (m, 5H, both *E*- and *Z*-isomer), 5.64 (d, *J* = 5.6 Hz, 1H, *E*-isomer), 5.26 (d, *J* = 28.8 Hz, 1H, *Z*-isomer), 2.45 (s, 3H, *Z*-isomer), 2.41 (s, 3H, *E*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 155.0 (d, ¹*J*_{CF} = 286.0 Hz), 154.8 (d, ³*J*_{CF} = 0.9 Hz), 153.7 (d, ³*J*_{CF} = 2.6 Hz), 153.5 (d, ¹*J*_{CF} = 282.1 Hz), 136.9, 136.8, 130.0, 129.9, 129.2 (d, ³*J*_{CF} = 6.5 Hz), 128.9 (d, ³*J*_{CF} = 8.1 Hz), 128.2, 128.1, 128.0 (d, ⁴*J*_{CF} = 3.6 Hz), 126.8 (d, ⁴*J*_{CF} = 4.6 Hz), 124.6, 124.5, 117.4, 116.6, 91.9 (d, ²*J*_{CF} = 37.9 Hz), 90.0 (d, ²*J*_{CF} = 19.4 Hz), 15.9, 15.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.1 (d, *J* = 28.6 Hz, 1F, *Z*-isomer), -82.5 (d, *J* = 5.6 Hz, 1F, *E*-isomer) ppm; HRMS (EI): calcd for C₁₅H₁₃FOS [M]⁺: 260.0671, found: 260.0673.

(*E*/*Z*)-1-(2-Fluoro-2-(4-methoxyphenoxy)vinyl)naphthalene (3id): Yellow solid. Yield: 81%. A mixture of *E*and *Z*-isomers (65:35, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.4 Hz, 1H, *E*-isomer), 8.10–8.08 (m, 1H, *Z*-isomer), 7.98–7.85 (m, 3H, both *E*- and *Z*-isomer), 7.68– 7.53 (m, 3H, both *E*- and *Z*-isomer), 7.34 (d, *J* = 8.8 Hz, 2H, *Z*-isomer), 7.20 (d, *J* = 8.8 Hz, 2H, *E*-isomer), 7.05 (d, *J* = 9.2 Hz, 2H, *Z*-isomer), 6.94 (d, *J* = 8.8 Hz, 2H, *E*-isomer), 6.42 (d, *J* = 5.6 Hz, 1H, *E*-isomer), 5.95 (d, *J* = 27.2 Hz, 1H, *Z*-isomer), 3.88 (s, 3H, *Z*-isomer), 3.82 (s, 3H, *E*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 157.4 (d, ${}^{1}J_{CF}$ = 280.3 Hz), 157.0, 156.6, 155.3 (d, ${}^{1}J_{CF}$ = 282.0 Hz), 148.2, 147.9, 134.0, 133.9, 131.9 (d, ${}^{3}J_{CF}$ = 3.6 Hz), 131.7, 129.0, 128.9, 128.8, 128.7, 127.7, 127.5, 126.8, 126.7, 126.4, 126.3, 126.1 (d, ${}^{4}J_{CF}$ = 2.0 Hz), 126.0, 125.9, 125.8, 124.1, 124.0, 119.5, 118.2, 115.2, 115.0, 87.8 (d, ${}^{2}J_{CF}$ = 38.2 Hz), 84.7 (d, ${}^{2}J_{CF}$ = 20.6 Hz), 55.7, 55.6 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (d, *J* = 5.6 Hz, 1F, *E*-isomer), -85.1 (d, *J* = 27.1 Hz, 1F, *Z*-isomer) ppm; HRMS(EI): calcd for C₁₉H₁₅FO₂ [M]⁺: 294.1056, found: 294.1058.

(*E*/*Z*)-1-(*tert*-Butyl)-4-(2-fluoro-2-(4-fluorophenoxy)vinyl)benzene (3jf): Colorless liquid. Yield: 88%. A mixture of *E*- and *Z*-isomers (74:26, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.30 (m, 4H, both *E*- and *Z*-isomer), 7.11–7.08 (m, 2H, both *E*- and *Z*-isomer), 7.04–6.99 (m, 2H, both *E*- and *Z*-isomer), 5.66 (d, *J* = 5.6 Hz, 1H, *E*-isomer), 5.27 (d, *J* = 28.8 Hz, 1H, *Z*-isomer), 1.31 (s, 9H, *Z*-isomer), 1.28 (s, 9H, *E*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (d, ¹*J*_{CF} = 241.5 Hz), 159.3 (d, ¹*J*_{CF} = 241.1 Hz), 155.0 (d, ¹*J*_{CF} = 285.7 Hz), 153.4 (d, ¹*J*_{CF} = 281.6 Hz), 150.8, 150.7, 149.9 (d, ³*J*_{CF} = 2.0 Hz), 149.8 (d, ³*J*_{CF} = 2.1 Hz), 149.7–149.6 (m), 129.2 (d, ³*J*_{CF} = 6.4 Hz), 128.9 (d, ³*J*_{CF} = 7.9 Hz), 127.5 (d, ⁴*J*_{CF} = 6.9 Hz), 127.3 (d, ⁴*J*_{CF} = 3.6 Hz), 125.6, 118.8 (d, ³*J*_{CF} = 8.4 Hz), 118.0 (d, ³*J*_{CF} = 8.2 Hz), 116.5 (d, ²*J*_{CF} = 23.5 Hz), 116.4 (d, ²*J*_{CF} = 23.5 Hz), 92.0 (d, ²*J*_{CF} = 37.0 Hz), 90.0 (d, ²*J*_{CF} = 19.4 Hz), 34.6, 34.5, 31.3, 31.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -83.6 (d, *J* = 29.0 Hz, 1F, *Z*-isomer), -84.0 (d, *J* = 5.6 Hz, 1F, *E*-isomer), -118.5 to -118.6 (m, 1F, *Z*-isomer), -118.9 to -119.0 (m, 1F, *E*-isomer) ppm; HRMS (EI): calcd for C₁₈H₁₈F₂O [M]⁺: 288.1326, found: 288.1327.

(*E*/Z)-1-Bromo-3-(2-fluoro-2-(3-methoxyphenoxy)vinyl)benzene (3kl): Yellow oil. Yield: 80%. A mixture of *E*- and *Z*-isomers (44:56, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H, both *E*- and *Z*-isomer), 7.25–7.14 (m, 3H, both *E*- and *Z*-isomer), 7.10–7.01 (m, 1H, both *E*- and *Z*-isomer), 6.65–6.60 (m, 3H, both *E*- and *Z*-isomer), 5.50 (d, *J* = 5.6 Hz, 1H, *E*-isomer), 5.12 (d, *J* = 28.4 Hz, 1H, *Z*-isomer), 3.70 (s, 3H, both *E*- and *Z*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 159.9, 154.7 (d, ¹*J*_{CF} = 286.2 Hz), 154.3, 153.3 (d, ³*J*_{CF} = 2.1 Hz), 153.1 (d, ¹*J*_{CF} = 284.1 Hz), 133.4 (d, ³*J*_{CF} = 6.5 Hz), 133.2 (d, ³*J*_{CF} = 8.6 Hz), 129.5, 129.4, 129.3, 129.0, 128.6 (d, ⁴*J*_{CF} = 1.9 Hz), 128.4 (d, ⁴*J*_{CF} = 2.0 Hz), 125.2 (d, ⁴*J*_{CF} = 7.1 Hz), 125.0 (d, ⁴*J*_{CF} = 3.5 Hz), 121.6, 121.5, 109.4, 109.3, 108.6, 107.7, 102.9, 102.1, 90.0 (d, ²*J*_{CF} = 38.4 Hz), 87.7 (d, ²*J*_{CF} = 28.9 Hz), 54.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (d, *J* = 5.6 Hz, 1F, *E*-isomer), -80.3 (d, *J* = 28.2 Hz, 1F, *Z*-isomer) ppm; HRMS (EI): calcd for C₁₅H₁₂BrFO₂ [M]⁺: 322.0005, found: 322.0007.

¹H, ¹³C, ¹⁹F NMR and HRMS (EI) spectra of compounds 3

¹H NMR Spectrum of 3aa

¹³C NMR Spectrum of 3aa

¹H NMR Spectrum of 3ab

-2.292

HRMS (EI) of 3ab

HRMS (EI) of 3ac

14

¹H NMR Spectrum of 3ad

HRMS (EI) of 3ad

¹H NMR Spectrum of 3ae

¹³C NMR Spectrum of 3ae

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

HRMS (EI) of 3ae

¹H NMR Spectrum of 3af

¹³C NMR Spectrum of 3af

¹H NMR Spectrum of 3ag

¹H NMR Spectrum of 3ah

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 HRMS (EI) of 3ah

318.1055 2.83e4

¹³C NMR Spectrum of 3ai

HRMS (EI) of 3ai

S − F − C N

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

HRMS (EI) of 3aj

20142348-1 391 (0.517) Cm (391-14) 291.1060 1.50e4 100 262.1029 * 292.1110 263.1075 165.0719 290.0992 196.0702 241.0896 261.0960 293.1155 130.9920 149.0258 164.0627 190.0677. 0 60.0205.75.0241 87.0216 94.5305 277.0796 280 140 --- m/z 80 300 120 100 60 160 200 240 260

¹⁹F NMR Spectrum of 3ak

.068	2.988	3.005	3.012	3.015	3.026	3.031	3.039	3.049	3.053	3.065	3.068	3.075	3.091
z	<u> </u>	<u> </u>	<u>_</u>	<u>-</u>	<u> </u>	<u>_</u>	<u>-</u>	<u>_</u>	<u>_</u>	<u> </u>	<u>-</u>	-	
φ	5	7	7	7	7	7	7	7	7	7	7	7	5
Ĩ	<u> </u>	_			-	-		2	1		-	1	-

¹³C NMR Spectrum of 3cd

HRMS (EI) of 3cd

¹H NMR Spectrum of 3df

¹³C NMR Spectrum of 3df

¹⁹F NMR Spectrum of 3df

¹H NMR Spectrum of 3ea

¹⁹F NMR Spectrum of 3ea

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

HRMS (EI) of 3ea

¹H NMR Spectrum of 3fa

HRMS (EI) of 3fa

={ 0-

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

HRMS (EI) of 3ga

¹H NMR Spectrum of 3ha

S C C

¹H NMR Spectrum of 3id

$\begin{array}{c} 8.219\\ 8.109\\ 8.1089\\ 8.0089\\ 8.0089\\ 8.0089\\ 8.0089\\ 8.0089\\ 8.076\\ 7.3080\\ 7.7.902\\ 7.7.902\\ 7.7.902\\ 7.7.902\\ 7.7.902\\ 7.7.902\\ 7.7.601\\ 7.7.601\\ 7.7.601\\ 7.7.602\\ 7.7.566\\$

¹⁹F NMR Spectrum of 3id

¹H NMR Spectrum of 3jf

¹H NMR Spectrum of 3kl

HRMS (EI) of 3kl

